Browse > Article
http://dx.doi.org/10.4014/jmb.1406.06025

Production, Structural Elucidation, and In Vitro Antitumor Activity of Trehalose Lipid Biosurfactant from Nocardia farcinica Strain  

Christova, Nelly (Institute of Microbiology, Bulgarian Academy of Sciences)
Lang, Siegmund (Braunschweig University of Technology, Institute of Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology)
Wray, Victor (Helmholtz Centre for Infection Research, Department of Molecular Structural Biology)
Kaloyanov, Kaloyan (Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia)
Konstantinov, Spiro (Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia)
Stoineva, Ivanka (Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.4, 2015 , pp. 439-447 More about this Journal
Abstract
The objective of this study was to isolate and identify the chemical structure of a biosurfactant produced by Nocardia farcinica strain BN26 isolated from soil, and evaluate its in vitro antitumor activity on a panel of human cancer cell lines. Strain BN26 was found to produce glycolipid biosurfactant on n-hexadecane as the sole carbon source. The biosurfactant was purified using medium-pressure liquid chromatography and characterized as trehalose lipid tetraester (THL) by nuclear magnetic resonance spectroscopy and mass spectrometry. Subsequently, the cytotoxic effects of THL on cancer cell lines BV-173, KE-37 (SKW-3), HL-60, HL-60/DOX, and JMSU-1 were evaluated by MTT assay. It was shown that THL exerted concentration-dependent antiproliferative activity against the human tumor cell lines and mediated cell death by the induction of partial oligonucleosomal DNA fragmentation. These findings suggest that THL could be of potential to apply in biomedicine as a therapeutic agent.
Keywords
Biosurfactants; glycolipids; trehalose tetraester; Nocardia farcinica; NMR; cytotoxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tuleva B, Christova N, Cohen R, Antonova D, Todorov T, Stoineva I. 2009. Isolation and charcterization of trehalose tetraester biosurfactant from a soil strain Micrococcus luteus BN56. Proc. Biochem. 44: 135-141.   DOI   ScienceOn
2 Rosenberg E, Ron EZ. 1999. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154-162.   DOI
3 Ryll R, Kumazawa Y, Yano I. 2001. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acidcontaining glycolipids. Microbiol. Immunol. 45: 801-811.   DOI
4 Sudo T, Zhao X, Wakamatsu Y, Shibahara M, Nomura N, Nakahara T, et al. 2000. Induction of the differentiation of human HL-60 promyelocytic leukemia cell line by succinoyl trehalose lipids. Cytotechnology 33: 259-264.   DOI   ScienceOn
5 Tokumoto Y, Nomura N, Uchiama H, Imura T, Morita T, Fukuoka T, Kitamoto D. 2009. Structural characterization and surface-active properties of succionyltrehalose lipid produced by Rhodococcus sp. SD-74. J. Oleo Sci. 58: 97-102.   DOI
6 Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I. 2008. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J. Appl. Microbiol. 104: 1703-1710.   DOI   ScienceOn
7 Wallace RJ, Steele LC. 1989. Susceptibility testing of Nocardia species for the clinical laboratory. Diagn. Microbiol. Infect. Dis. 9: 155-166.   DOI   ScienceOn
8 Niescher S, Wray V, Lang S, Kashabek SR, Schlomann M. 2006. Identification and structural characterization of novel trehalose dinocardiomycolates from n-alkane grown Rhodococcus opacus 1CP. Appl. Microbiol. Biotechnol. 70: 605-611.   DOI
9 Marques AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, et al. 2009. The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem. Phys. Lip. 158: 110-117.   DOI   ScienceOn
10 Miller L, Dykes L, Polesky A. 1988. Procedure for DNA isolation from nuclear cells. Nucl. Acids Res. 16: 1215.   DOI
11 Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63.   DOI   ScienceOn
12 Peng F, Liu Z, Wang L, Shao Z. 2007. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J. Appl. Microbiol. 102: 1603-1611.   DOI   ScienceOn
13 Rapp P, Gabriel-Jurgens LHE. 2003. Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149: 2879-2890.   DOI   ScienceOn
14 Rodrigues L, Banat IM, Texeira J, Oliviera R. 2006. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 57: 609-618.   DOI   ScienceOn
15 Ron EZ, Rosenberg E. 2001. Natural roles of biosurfactants. Environ. Microbiol. 3: 229-236.   DOI   ScienceOn
16 Rosenberg M, Gutnick D, Rosenberg E. 1980. Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol. Lett. 9: 29-33.   DOI
17 Kitamoto D, Isoda H, Nakahar T. 2002. Functions and potential applications of glycolipid biosurfactants - from energy saving materials to gene delivery carriers. J. Biosci. Bioeng. 94: 187-201.   DOI   ScienceOn
18 Isoda H, Kitamoto D, Shinmoto H, Matsumura M, Nakahara T. 1997. Microbial extracellular glycolipid induction of differentiation and inhibition of protein kinase C activity of human promyelocytic leukaemia cell line HL60. Biosci. Biotechnol. Biochem. 61: 609-614.   DOI   ScienceOn
19 Franzetti A, Bestetti G, Carreda P, La Colla P, Tamburini E. 2008. Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol. Ecol. 63: 238-248.   DOI   ScienceOn
20 Goodfellow M, Lechavalier MP. 1989. Genus Nocardia Trevisan, pp. 2350-2353. In Williams ST, Sharpe ME, Holt JG (eds.). Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore.
21 Konstantinov S, Eibl H, Berger MR. 1998. Alkylphosphocholines induce apoptosis in HL-60 and U-937 leukemic cells. Cancer Chemother. Pharmacol. 41: 210-216.   DOI
22 Krysko DV, Berghe TV, Parthoens E, D’Herde K, Vandenabeele P. 2008. Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Methods Enzymol. 442: 307-341.   DOI
23 Kuyukina MS, Ivshina IB, Gein SV, Baeva TA, Chereshnev VA. 2009. In vitro immunomodulating activity of biosurfactant glycolipid complex from Rhodococcus ruber. Bull. Exp. Biol. Med. 144: 326-330.   DOI
24 Desai JD, Banat IM. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64.
25 Espuny MJ, Egido S, Mercade ME, Manresa A. 1995. Characterization of trehalose tetraester produced by a waste lubricant oil degrader Rhodococcus sp. Toxicol. Environ. 48: 83-88.   DOI   ScienceOn
26 Bouchez-Naitali M, Blanchet D, Bardin V, Vandecasteele JP. 2001. Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 147: 2537-2543.   DOI
27 Bendinger B, Rijnaarts HM, Altendorf K, Zehnder AJB. 1993. Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl. Environ. Microbiol. 59: 3973-3977.