Browse > Article
http://dx.doi.org/10.4014/jmb.1408.08048

Measurement of Antibodies to Varicella-Zoster Virus Using a Virus-Free Fluorescent-Antibody-to-Membrane-Antigen (FAMA) Test  

Park, Rackhyun (Division of Biological Science and Technology, Yonsei University)
Hwang, Ji Young (Department of Microbiology, Yeungnam University)
Lee, Kang Il (Division of Biological Science and Technology, Yonsei University)
Namkoong, Sim (Division of Biological Science and Technology, Yonsei University)
Choi, Seuk-Keun (Eubiologics)
Park, Songyong (Division of Biological Science and Technology, Yonsei University)
Park, Hosun (Department of Microbiology, Yeungnam University)
Park, Junsoo (Division of Biological Science and Technology, Yonsei University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.2, 2015 , pp. 268-273 More about this Journal
Abstract
The fluorescent-antibody-to-membrane-antigen (FAMA) test is regarded as the "gold standard" to detect protective antibodies to varicella-zoster virus (VZV) because of its high sensitivity and specificity. Because the classic FAMA test uses an infectious virus for detection of antibodies to VZV, it is labor-intensive, and also requires special equipment for handling the virus. For this reason, we attempted to develop a simple and safe FAMA assay. Because VZV glycoprotein E (gE) is one of the major VZV glycoproteins, we used the gE protein for the FAMA test (gE FAMA). Here, we demonstrate that overexpression of gE in HEK293T cells can be used to measure antibodies in human serum, and that gE FAMA titers are closely correlated with gpEIA ELISA data. These results indicate that our gE FAMA test has the potential to measure antibodies to VZV.
Keywords
Varicella-zoster virus; fluorescent-antibody-to-membrane-antigen test; chickenpox; shingles; glycoprotein E;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Breuer J, Schmid DS, Gershon AA. 2008. Use and limitations of varicella-zoster virus-specific serological testing to evaluate breakthrough disease in vaccinees and to screen for susceptibility to varicella. J. Infect. Dis. 197(Suppl 2): S147-S151.   DOI   ScienceOn
2 Kutinova L, Hainz P, Ludvikova V, Maresova L, Nemeckova S. 2001. Immune response to vaccinia virus recombinants expressing glycoproteins gE, gB, gH, and gL of varicella-zoster virus. Virology 280: 211-220.   DOI   ScienceOn
3 Montalvo EA, Parmley RT, Grose C. 1985. Structural analysis of the varicella-zoster virus gp98-gp62 complex: posttranslational addition of N-linked and O-linked oligosaccharide moieties. J. Virol. 53: 761-770.
4 Saiman L, LaRussa P, Steinberg SP, Zhou J, Baron K, Whittier S, et al. 2001. Persistence of immunity to varicellazoster virus after vaccination of healthcare workers. Infect. Control Hosp. Epidemiol. 22: 279-283.   DOI   ScienceOn
5 Sauerbrei A, Wutzler P. 2006. Serological detection of varicella-zoster virus-specific immunoglobulin G by an enzyme-linked immunosorbent assay using glycoprotein antigen. J. Clin. Microbiol. 44: 3094-3097.   DOI   ScienceOn
6 Thomsson E, Persson L, Grahn A, Snall J, Ekblad M, Brunhage E, et al. 2011. Recombinant glycoprotein E produced in mammalian cells in large-scale as an antigen for varicella-zoster-virus serology. J. Virol. Methods 175: 53-59.   DOI   ScienceOn
7 Wasmuth EH, Miller WJ. 1990. Sensitive enzyme-linked immunosorbent assay for antibody to varicella-zoster virus using purified VZV glycoprotein antigen. J. Med. Virol. 32: 189-193.   DOI   ScienceOn
8 Williams V, Gershon A, Brunell PA. 1974. Serologic response to varicella-zoster membrane antigens measured by direct immunofluorescence. J. Infect. Dis. 130: 669-672.   DOI   ScienceOn
9 Zerboni L, Sen N, Oliver SL, Arvin AM. 2014. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol. 12: 197-210.   DOI   ScienceOn
10 Cohen JI, Ali MA, Bayat A, Steinberg SP, Park H, Gershon AA, Burbelo PD. 2014. Detection of antibodies to varicellazoster virus in recipients of the varicella vaccine using a luciferase immunoprecipitation system assay. Clin. Vaccine Immunol. 21: 1288-1291.   DOI   ScienceOn
11 Forghani B, Ni L, Grose C. 1994. Neutralization epitope of the varicella-zoster virus gH:gL glycoprotein complex. Virology 199: 458-462.   DOI   ScienceOn
12 Harper DR, Mathieu N, Mullarkey J. 1998. High-titre, cryostable cell-free varicella zoster virus. Arch. Virol. 143: 1163-1170.   DOI   ScienceOn
13 Gershon AA, Steinberg SP, LaRussa P, Ferrara A, Hammerschlag M, Gelb L. 1988. Immunization of healthy adults with live attenuated varicella vaccine. J. Infect. Dis. 158: 132-137.   DOI   ScienceOn
14 Grose C. 1990. Glycoproteins encoded by varicella-zoster virus: biosynthesis, phosphorylation, and intracellular trafficking. Annu. Rev. Microbiol. 44: 59-80.   DOI   ScienceOn
15 Grose C, Brunel PA. 1978. Varicella-zoster virus: isolation and propagation in human melanoma cells at 36 and 32 degrees C. Infect. Immun. 19: 199-203.
16 Hirt B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26: 365-369.   DOI
17 Iltis JP, Castellano GA, Gerber P, Le C, Vujcic LK, Quinnan GV Jr. 1982. Comparison of the Raji cell line flu orescent antibody to membrane antigen test and the enzyme-linked immunosorbent assay for determination of immunity to varicella-zoster virus. J. Clin. Microbiol. 16: 878-884.
18 Kim YH, Hwang JY, Shim HM, Lee E, Park S, Park H. 2014. Evaluation of a commercial glycoprotein enzyme-linked immunosorbent assay for measuring vaccine immunity to varicella. Yonsei Med. J. 55: 459-466.   DOI   ScienceOn