Browse > Article
http://dx.doi.org/10.4014/jmb.1410.10032

Morphological, Molecular, and Biochemical Characterization of Astaxanthin-Producing Green Microalga Haematococcus sp. KORDI03 (Haematococcaceae, Chlorophyta) Isolated from Korea  

Kim, Ji Hyung (Global Bioresources Research Center, Korea Institute of Ocean Science & Technology)
Affan, Abu (Global Bioresources Research Center, Korea Institute of Ocean Science & Technology)
Jang, Jiyi (Global Bioresources Research Center, Korea Institute of Ocean Science & Technology)
Kang, Mee-Hye (Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology)
Ko, Ah-Ra (Deep-sea and Seabed Resources Research Division, Korea Institute of Ocean Science & Technology)
Jeon, Seon-Mi (Global Bioresources Research Center, Korea Institute of Ocean Science & Technology)
Oh, Chulhong (Global Bioresources Research Center, Korea Institute of Ocean Science & Technology)
Heo, Soo-Jin (Global Bioresources Research Center, Korea Institute of Ocean Science & Technology)
Lee, Youn-Ho (Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology)
Ju, Se-Jong (Deep-sea and Seabed Resources Research Division, Korea Institute of Ocean Science & Technology)
Kang, Do-Hyung (Global Bioresources Research Center, Korea Institute of Ocean Science & Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.2, 2015 , pp. 238-246 More about this Journal
Abstract
A unicellular red microalga was isolated from environmental freshwater in Korea, and its morphological, molecular, and biochemical properties were characterized. Morphological analysis revealed that the isolate was a unicellular biflagellated green microalga that formed a non-motile, thick-walled palmelloid or red aplanospore. To determine the taxonomical position of the isolate, its 18S rRNA and rbcL genes were sequenced and phylogenetic analysis was performed. We found that the isolate was clustered together with other related Haematococcus strains showing differences in the rbcL gene. Therefore, the isolated microalga was classified into the genus Haematococcus, and finally designated Haematococcus sp. KORDI03. The microalga could be cultivated in various culture media under a broad range of pH and temperature conditions. Compositions of the microalgal cellular components were analyzed, and its protein, carbohydrate, and lipid compositions were estimated to be 21.1 ± 0.2%, 48.8 ± 1.8%, and 22.2 ± 0.9%, respectively. In addition, D-glucose and D-mannose were the dominant monosaccharides in the isolate, and its amino acids were composed mainly of aspartic acid, glutamic acid, alanine, and leucine. Moreover, several polyunsaturated fatty acids accounted for about 80% of the total fatty acids in Haematococcus sp. KORDI03, and the astaxanthin content in the red aplanospores was estimated to be 1.8% of the dry cell weight. To the best of our knowledge, this is the first report of an Haematococcus sp. isolated from Korea, which may be used for bioresource production in the microalgal industry.
Keywords
Haematococcus sp. KORDI03; astaxanthin; bioresource production; phylogenetic analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lorenz RT. 1999. A technical review of Haematococcus algae. NatuRoseTM Technical Bulletin #060, pp. 1-12. Cyanotech Corporation, Kailua-Kona, Hawaii.
2 Lorenz RT, Cysewski GR. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160-167.   DOI   ScienceOn
3 Nakada T, Misawa K, Nozaki H. 2008. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol. Phylogenet. Evol. 48: 281-291.   DOI   ScienceOn
4 Nichols HW. 1973. Growth media – freshwater, pp. 7-24. In Stein JR (ed.). Handbook of Phycological Methods. Cambridge University Press, Cambridge.
5 Spurr AR. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31-43.   DOI
6 Nichols PD, Guckert JB, White DC. 1986. Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J. Microbiol. Methods 5: 49-55.   DOI   ScienceOn
7 Parajó JC, Santos V, Vázquez M. 1998. Production of carotenoids by Phaffia rhodozyma growing on media made from hemicellulosic hydrolysates of Eucalyptus globulus wood. Biotechnol. Bioeng. 59: 501-506.   DOI
8 Pröschold T, Marin B, Schlösser UG, Melkonian M. 2001. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152: 265-300.   DOI   ScienceOn
9 Stansell G, Gray V, Sym S. 2012. Microalgal fatty acid composition: implications for biodiesel quality. J. Appl. Phycol. 24: 791-801.   DOI
10 Boussiba S, Bing W, Yuan JP, Zarka A, Chen F. 1999. Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol. Lett. 21: 601-604.   DOI   ScienceOn
11 Allen MM. 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol. 4: 1-4.   DOI
12 AOAC. 2006. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th Ed. AOAC International, Gaitherburg, Maryland.
13 Bakker FT, Olsen JL, Stam WT, van den Hoek C. 1994. The Cladophora complex (Chlorophyta): new views based on 18S rRNA gene sequences. Mol. Phylogenet. Evol. 3: 365-382.   DOI   ScienceOn
14 Bar E, Rise M, Vishkautsan M, Arad S. 1995. Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J. Plant Physiol. 146: 527-534.   DOI   ScienceOn
15 Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.   DOI
16 Bon J, Leathers T, Jayaswal R. 1997. Isolation of astaxanthin-overproducing mutants of Phaffia rhodozyma. Biotechnol. Lett. 19: 109-112.   DOI   ScienceOn
17 Brown MR, Jeffrey SW. 1992. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol. 161: 91-113.   DOI   ScienceOn
18 Buchheim MA, Chapman RL. 1991. Phylogeny of the colonial green flagellates: a study of 18S and 26 S rRNA sequence data. Biosystems 25: 85-100.   DOI   ScienceOn
19 Choubert G, Heinrich O. 1993. Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture 112: 217-226.   DOI   ScienceOn
20 Buchheim MA, Sutherland DM, Buchheim JA, Wolf M. 2013. The blood alga: phylogeny of Haematococcus (Chlorophyceae) inferred from ribosomal RNA gene sequence data. Eur. J. Phycol. 48: 318-329.   DOI
21 Damiani MC, Popovich CA, Constenla D, Leonardi PI. 2010. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 101: 3801-3807.   DOI   ScienceOn
22 Gobantes I, Choubert G, Milicua JCG, Gómez R. 1998. Serum carotenoid concentration changes during sexual maturation in farmed rainbow trout (Oncorhynchus mykiss). J. Agric. Food Chem. 46: 383-387.   DOI   ScienceOn
23 Demchenko E, Mikhailyuk T, Coleman AW, Pröschold T. 2012. Generic and species concepts in Microglena (previously the Chlamydomonas monadina group) revised using an integrative approach. Eur. J. Phycol. 47: 264-290.   DOI   ScienceOn
24 Denery JR, Dragull K, Tang CS, Li QX. 2004. Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal. Chim. Acta 501: 175-181.   DOI   ScienceOn
25 Fraser PD, Miura Y, Misawa N. 1997. In vitro characterization of astaxanthin biosynthetic enzymes. J. Biol. Chem. 272: 6128-6135.   DOI   ScienceOn
26 Grung M, D’Souza FL, Borowitzka M, Liaaen-Jensen S. 1992. Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S, 3’S)-astaxanthin esters. J. Appl. Phycol. 4: 165-171.   DOI
27 Johnson EA, An GH. 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11: 297-326.   DOI
28 Guindon S, Lethiec F, Duroux P, Gascuel O. 2005. PHYML Online — a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33: 557-559.   DOI   ScienceOn
29 Hagen C, Siegmund S, Braune W. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37: 217-226.   DOI   ScienceOn
30 Hanyuda T, Wakana I, Arai S, Miyaji K, Watano Y, Ueda K. 2002. Phylogenetic relationships within Cladophorales (Ulvophyceae, Chlorophyta) inferred from 18S rRNA gene sequences, with special reference to Aegagropila linnaei. J. Phycol. 38: 564-571.   DOI   ScienceOn
31 Harker M, Tsavalos AJ, Young AJ. 1996. Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. J. Ferment. Bioeng. 82: 113-118.   DOI   ScienceOn
32 Harris EH. 1989. The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use. Academic Press, San Diego. California.
33 Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.   DOI   ScienceOn
34 Klochkova TA, Kwak MS, Han JW, Motomura T, Nagasato C, Kim GH. 2013. Cold-tolerant strain of Haematococcus pluvialis (Haematococcaceae, Chlorophyta) from Blomstrandhalvøya (Svalbard). Algae 28: 185-192.   DOI   ScienceOn
35 Knothe G. 2008. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22: 1358-1364.   DOI   ScienceOn
36 Yuan JP, Chen F. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food Chem. 68: 443-448.   DOI   ScienceOn
37 Wayama M, Ota S, Matsuura H, Nango N, Hirata A, Kawano S. 2013. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS ONE 8: e53618.   DOI
38 Yokoyama A, Miki W. 1995. Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin-producing bacterium Agrobacterium aurantiacum. FEMS Microbiol. Lett. 128: 139-144.   DOI