Browse > Article
http://dx.doi.org/10.4014/jmb.1406.06041

Sponge-Specific Unknown Bacterial Groups Detected in Marine Sponges Collected from Korea Through Barcoded Pyrosequencing  

Jeong, Jong-Bin (Department of Biological Science and Biotechnology, Hannam University)
Kim, Kyoung-Ho (Department of Microbiology, Pukyong National University)
Park, Jin-Sook (Department of Biological Science and Biotechnology, Hannam University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.1, 2015 , pp. 1-10 More about this Journal
Abstract
The bacterial diversity of 10 marine sponges belonging to the species Cliona celata, an unidentified Cliona species, Haliclona cinerea, Halichondria okadai, Hymeniacidon sinapium, Lissodendoryx isodictyalis, Penares incrustans, Spirastrella abata, and Spirastrella panis collected from Jeju Island and Chuja Island was investigated using amplicon pyrosequencing of the 16S rRNA genes. The microbial diversity of these sponges has as of yet rarely or never been investigated. All sponges, except Cliona celata, Lissodendoryx isodictyalis, and Penares incrustans, showed simple bacterial diversity, in which one or two bacterial OTUs occupied more than 50% of the pyrosequencing reads and their OTU rank abundance curves saturated quickly. Most of the predominant OTUs belonged to Alpha-, Beta-, or Gammaproteobacteria. Some of the OTUs from the sponges with low diversity were distantly (88%~89%) or moderately (93%~97%) related to known sequences in the GenBank nucleotide database. Phylogenetic analysis showed that many of the representative sequences of the OTUs were related to the sequences originating from sponges and corals, and formed sponge-specific or -related clades. The marine sponges investigated herein harbored unexplored bacterial diversity, and further studies should be done to understand the microbes present in sponges.
Keywords
Bacterial diversity; barcoded pyrosequencing; Chuja Island; Jeju Island; marine sponge;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Cho H, Park J. 2009. Comparative analysis of the community of culturable bacteria associated with sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP. Kor. J. Microbiol. 45: 155-162.
2 Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
3 Bavestrello G, Arillo A, Calcinai B, Cattaneo-Vietti R, Cerrano C, Gaino E, et al. 2000. Parasitic diatoms inside antarctic sponges. Biol. Bull. 198: 29-33.   DOI
4 Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. 2010. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 266-267.   DOI   ScienceOn
5 Croue J, West NJ, Escande ML, Intertaglia L, Lebaron P, Suzuki MT. 2013. A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe. Sci. Rep. 3: 2583.   DOI
6 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.   DOI   ScienceOn
7 Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, et al. 2006. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7: 57.   DOI   ScienceOn
8 Elenkov I, Popov S, Andreev S. 1999. Sterols from two Black Sea sponges (Haliclona sp.). Comp. Biochem. Physiol. B 123: 357-360.   DOI   ScienceOn
9 Erwin PM, Olson JB, Thacker RW. 2011. Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico. PLoS One 6: e26806.   DOI
10 Hill M, Hill A, Lopez N, Harriott O. 2006. Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar. Biol. 148: 1221-1230.   DOI
11 Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, Schmitt S. 2013. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol. Ecol. 83: 232-241.   DOI   ScienceOn
12 Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68: 4431-4440.   DOI
13 Hentschel U, Usher KM, Taylor MW. 2006. Marine sponges as microbial fermenters. FEMS Microbiol. Ecol. 55: 167-177.   DOI   ScienceOn
14 Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J. 2005. An anaerobic world in sponges. Geomicrobiol. J. 22: 1-10.   DOI   ScienceOn
15 Jang KH, Lee Y, Sim CJ, Oh KB, Shin J. 2012. Bioactive lipids from the sponge Spirastrella abata. Bioorg. Med. Chem. Lett. 22: 1078-1081.   DOI   ScienceOn
16 Jeong EJ, Im CS, Park JS. 2010. A comparison of bacterial diversity associated with the sponge Spirastrella abata depending on RFLP and DGGE. Kor. J. Microbiol. 46: 366-374.
17 Jeong IH, Kim KH, Lee HS, Park JS. 2014. Analysis of bacterial diversity in sponges collected from Chuuk and Kosrae Islands in Micronesia. J. Microbiol. 52: 20-26.   DOI   ScienceOn
18 Joh YG, Elenkov IJ, Stefanov KL, Popov SS, Dobson G, Christie WW. 1997. Novel di-, tri-, and tetraenoic fatty acids with bis-methylene-interrupted double-bond systems from the sponge Haliclona cinerea. Lipids 32: 13-17.   DOI
19 Jeong IH, Kim KH, Park JS. 2013. Analysis of bacterial diversity in sponges collected off Chujado, an island in Korea, using barcoded 454 pyrosequencing: analysis of a distinctive sponge group containing Chloroflexi. J. Microbiol. 51: 570-577.   DOI   ScienceOn
20 Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R. 2012. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Microbiol. Chapter 1: Unit 1E 5.
21 Kimes NE, Johnson WR, Torralba M, Nelson KE, Weil E, Morris PJ. 2013. The Montastraea faveolata microbiome: ecological and temporal influences on a Caribbean reefbuilding coral in decline. Environ. Microbiol. 15: 2082-2094.   DOI   ScienceOn
22 Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI
23 Lan Y, Wang Q, Cole JR, Rosen GL. 2012. Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS One 7: e32491.   DOI
24 Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY. 2011. Pyrosequencing reveals highly diverse and speciesspecific microbial communities in sponges from the Red Sea. ISME J. 5: 650-664.   DOI
25 Liu K, Linder CR, Warnow T. 2011. RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation. PLoS One 6: e27731.   DOI
26 Pile A, Patterson M, Witman J. 1996. In situ grazing on plankton <10 µm by the boreal sponge Mycale lingua. Mar. Ecol. Prog. Ser. 141: 95-102.   DOI
27 Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. 2011. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5: 169-172.   DOI
28 McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6: 610-618.   DOI
29 Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW. 2010. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J. 4: 1-16.   DOI
30 Park S, Yokoa A, Ioh T, Park JS. 2011. Sphingomonas jejuensis sp. nov., isolated from marine sponge Hymeniacidon flavia. J. Microbiol. 49: 238-242.   DOI
31 Santavy DL, Willenz P, Colwell RR. 1990. Phenotypic study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl. Environ. Microbiol. 56: 1750-1762.
32 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI   ScienceOn
33 Schmitt S, Hentschel U, Taylor M. 2012. Deep sequencing reveals diversity and community structure of complex microbiota in five Mediterranean sponges. Hydrobiologia 687:. 341-351.   DOI
34 Taylor MW, Radax R, Steger D, Wagner M. 2007. Spongeassociated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71: 295-347.   DOI   ScienceOn
35 Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, et al. 2012. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 6: 564-576.   DOI
36 Sears MA, Gerhart DJ, Rittschof D. 1990. Antifouling agents from marine sponge Lissodendoryx isodictyalis carter. J. Chem. Ecol. 16: 791-799.   DOI   ScienceOn
37 Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, Lopez J. 2005. A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst. Appl. Microbiol. 28: 242-264.   DOI   ScienceOn
38 Shoji N, Umeyama A, Mooki S, Arihara S, Ishida T, Nomoto K, et al. 1992. Potent inhibitors of histamine release, two novel triterpenoids from the Okinawan marine sponge Penares incrustans. J. Nat. Prod. 55: 1682-1685.   DOI
39 Simister RL, Deines P, Botte ES, Webster NS, Taylor MW. 2012. Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ. Microbiol. 14: 517-524.   DOI   ScienceOn
40 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.   DOI   ScienceOn
41 Uriz MJ, Turon X, Becerro MA, Agell G. 2003. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc. Res. Tech. 62: 279-299.   DOI   ScienceOn
42 Wilkinson C, Nowak M, Austin B, Colwell R. 1981. Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microbial Ecol. 7: 13-21.   DOI   ScienceOn
43 Ushio-Sata N, Matsunaga S, Fusetani N, Honda K, Yasumuro K. 1996. Penaramides, which inhibit binding of ω-conotoxin GVIA to N-type Ca2+ channels, from the marine sponge Penares aff. incrustans. Tetrahedron Lett. 37: 225-228.   DOI   ScienceOn
44 Van Soest RW, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, De Voogd NJ, et al. 2012. Global diversity of sponges (Porifera). PLoS One 7: e35105.   DOI
45 Webster NS, Cobb RE, Soo R, Anthony SL, Battershill CN, Whalan S, Evans-Illidge E. 2011. Bacterial community dynamics in the marine sponge Rhopaloeides odorabile under in situ and ex situ cultivation. Mar. Biotechnol. (NY) 13: 296-304.   DOI
46 Webster NS, Taylor MW, Behnam F, Lucker S, Rattei T, Whalan S, et al. 2010. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12: 2070-2082.
47 White JR, Patel J, Ottesen A, Arce G, Blackwelder P, Lopez JV. 2012. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS One 7: e38204.   DOI
48 Wichels A, Wurtz S, Dopke H, Schutt C, Gerdts G. 2006. Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microbiol. Ecol. 56: 102-118.   DOI   ScienceOn
49 Wilkinson CR. 1983. Net primary productivity in coral reef sponges. Science 219: 410-412.   DOI   ScienceOn
50 Xavier JR, Rachello-Dolmen PG, Parra-Velandia F, Schonberg CH, Breeuwer JA, van Soest RW. 2010. Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol. Phylogenet. Evol. 56: 13-20.   DOI   ScienceOn
51 Yoon BJ, You HS, Lee DH, Oh DC. 2011. Aquimarina spongiae sp. nov., isolated from marine sponge Halichondria oshoro. Int. J. Syst. Evol. Microbiol. 61: 417-421.   DOI   ScienceOn