Browse > Article
http://dx.doi.org/10.4014/jmb.1506.06025

Distribution of Toxin Genes and Enterotoxins in Bacillus thuringiensis Isolated from Microbial Insecticide Products  

Cho, Seung-Hak (Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health)
Kang, Suk-Ho (Interdisciplinary Program of Biomodulation, Myongji University)
Lee, Yea-Eun (Interdisciplinary Program of Biomodulation, Myongji University)
Kim, Sung-Jo (Project Department, Korea Institute Food Safety Management Accreditation)
Yoo, Young-Bin (Department of Medical Laboratory Science, College of Medical Science, Konyang University)
Bak, Yeong-Seok (Department of Emergency Medical Service, Konyang University)
Kim, Jung-Beom (Department of Food Science and Technology, Sunchon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.12, 2015 , pp. 2043-2048 More about this Journal
Abstract
Bacillus thuringiensis microbial insecticide products have been applied worldwide. Although a few cases of B. thuringiensis foodborne illness have been reported, little is known about the toxigenic properties of B. thuringiensis isolates. The aims of this study were to estimate the pathogenic potential of B. thuringiensis selected from microbial insecticide products, based on its possession of toxin genes and production of enterotoxins. Fifty-two B. thuringiensis strains selected from four kinds of microbial insecticide products were analyzed. PCR assay for detection of toxin genes and immunoassay for detection of enterotoxins were performed. The hemolysin BL complex as a major enterotoxin was produced by 17 (32.7%), whereas the non-hemolytic enterotoxin complex was detected in 1 (1.9%) of 52 B. thuringiensis strains. However, cytK, entFM, and ces genes were not detected in any of the tested B. thuringiensis strains. The potential risk of food poisoning by B. thuringiensis along with concerns over B. thuringiensis microbial insecticide products has gained attention recently. Thus, microbial insecticide products based on B. thuringiensis should be carefully controlled.
Keywords
Bacillus thuringiensis; microbial insecticide; enterotoxin; toxin gene;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, and Andersson M. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for emetic toxin production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105-113.   DOI
2 ESFA (European Food Safety Authority). 2005. Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus spp. in foodstuffs. EFSA J. 175: 1-48.
3 Chon JW, Kim JH, Lee SJ, Hyeon JY, Seo KH. 2012. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik. Food Microbiol. 32: 217-222.   DOI
4 Bizzarri MF, Bishop AH. 2006. Recovery of Bacillus thuringiensis in vegetative form from the phylloplane of clover (Trifolium hybridum) during a growing season. J. Invertebr. Pathol. 94: 38-47.   DOI
5 Bartoszewicz M, Bideshi DK, Kraszewska A, Modzelewska E, Swiecicka I. 2009. Natural isolates of Bacillus thuringiensis display genetic and psychrotrophic properties characteristics of Bacillus weihenstephanenesis. J. Appl. Microbiol. 106: 1967-1975.   DOI
6 Bartoszewicz M, Hansen BM, Swiecicka I. 2008. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol. 25: 588-596.   DOI
7 Jeon JH, Park JH. 2010. Toxin gene analysis of Bacillus cereus and Bacillus thuringiensis isolated from cooked rice. Korean J. Food Sci. Technol. 42: 361-367.
8 Janes GB, Larsen P, Jacobsen BL, Madsen B, Smidt L, Andrup L. 2002. Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B. thuringiensis-based pesticides. Appl. Environ. Microbiol. 68: 4900-4905.   DOI
9 Hendriksen NB, Hansen BM. 2006. Detection of Bacillus thuringiensis kurstaki HD1 on cabbage for human consumption. FEMS Microbiol. Lett. 257: 106-111.   DOI
10 Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, et al. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66: 2627-2630.   DOI
11 Hansen BM, Hendriksen NB. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185-189.   DOI
12 Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, Sun M. 2008. New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl. Environ. Microbiol. 74: 6997-7001.   DOI
13 Ehling-Schulz M, Guinbretiere MH, Monthán A, Berge O, Fricker M, Svensson B. 2006. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 260: 232-240.   DOI
14 Ehling-Schulz M, Svensson B, Guinbretiere MH, Lindbäck T, Andersson M, Schulz A, et al. 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related isolates. Microbiology 151: 183-197.   DOI
15 Naranjo SE, Ellsworth PC. 2010. Fourteen years of Bt cotton advantages IPM in Arizona. Southwest Entomol. 35: 437-444.   DOI
16 Naranjo M, Denayer S, Botteldoorn N, Delbrassinne L, Veys J, Waegenaere J, et al. 2011. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 49: 4379-4381.   DOI
17 Modrie P, Beuls E, Mahillon J. 2010. Differential transfer dynamics of pAW63 plasmid among members of the Bacillus cereus group in food microcosms. J. Appl. Microbiol. 108: 888-897.   DOI
18 Lund T, Debuyser ML, Granum PE. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254-261.   DOI
19 McIntyre L, Bernard K, Beniac D, Isaac-Renton JL, Naseby DC. 2008. Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia, Canada. Appl. Environ. Microbiol. 74: 7451-7453.   DOI
20 Maughan H, Van der Auwera G. 2011. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect. Genet. Evol. 11: 789-797.   DOI
21 Kim JB, Park JS, Kim MS, Hong SC, Park JH, Oh DH. 2011. Genetic diversity of emetic toxin producing Bacillus cereus Korean strains. Int. J. Food Microbiol. 150: 66-72.   DOI
22 Kim JB, Kim JM, Cho SH, Choi NJ, Oh DH. 2011. Toxin genes profiles and toxin producing ability of Bacillus cereus isolated from clinical and food samples. J. Food Sci. 76: T25-T29.   DOI
23 Ryan PA, MacMillan JD, Zilinskas BA. 1997. Molecular cloning and characterization of the genes encoding L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179: 2551-2556.   DOI
24 Rosenquits H, Smidt L, Andersen SR, Jensen GB, Wilcks A. 2005. Occurrence and significance of Bacillus cereus and B. thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 250: 129-136.   DOI
25 Roh JY, Choi JY, Li MS, Jin BR, Je YH. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559.
26 Rajkovic A, Uyttendaele M, Vermeulen A, Andjelkovic M, Fitz-James I, in 't Veld P, et al. 2008. Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett. Appl. Microbiol. 46: 536-541.   DOI
27 Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikan C, Ohba M, Assavanig A, Panbabgred W. 2008. Broad distribution of enterotoxin genes (hblCDA, nhe ABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int. J. Food Microbiol. 121: 352-356.   DOI
28 Prabhaker A, Bishop AH. 2011. Invertebrate pathogenicity and toxin-producing potential of strains of Bacillus thuringiensis endemic to Antarctica. J. Invertebr. Pathol. 107: 132-138.   DOI
29 Pluina NV, Zotov VS, Parkhomenko AL, Parkhomenko TU, Topunov AF. 2013. Genetic diversity of Bacillus thuringiensis from different geo-ecological regions of Ukraine by analyzing the 16S rRNA and gyrB genes and by AP-PCR and saAFLP. Acta Nat. 5: 90-100.
30 Oh MH, Ham JS, Cox JM. 2012. Diversity and toxigenicity among members of Bacillus cereus group. Int. J. Food Microbiol. 152: 1-8.   DOI
31 Swiecicka I, Mahillon J. 2006. Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda). FEMS Microbiol. Ecol. 56: 132-140.   DOI
32 Svensson B, Monthán A, Shaheen R, Andersson M, Salkinoja-Salonen M, Christiansson A. 2006. Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. Int. Dairy J. 16: 740-749.   DOI
33 Stenfos-Arnesen LP, Fagerlund A, Granum PE. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606.   DOI
34 Stenfors LP, Granum PE. 2001. Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol. Lett. 197: 223-228.   DOI
35 Schnepf E , Crickmore N, Van Rie J , Lereclus D , Baum J , Feitelson J, et al. 1998. Bacillus thurigiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
36 Seong SJ, Lee KG, Lee SJ, Hong KW. 2008. Toxin gene profiling of Bacillus cereus food isolates by PCR. J. Korean Soc. Appl. Biol. Chem. 54: 263-268.   DOI
37 Schoeni JL, Wong AC. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636-648.   DOI
38 Schoeni JL, Wong AC. 1999. Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53: 159-167.   DOI
39 Sacch CT, Whitney AM, Mayer LW, Morey R, Steigerwalt A, Boras A, et al. 2002. Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerg. Infect. Dis. 8: 1117-1123.   DOI
40 Yang CY, Pang JC, Kao SS, Tsen HY. 2003. Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production. J. Agric. Food Chem. 51: 100-105.   DOI
41 Van der Auwere GA, Timmery S, Hoton F, Mahillon J. 2007. Plasmid exchanges among members of the Bacillus cereus group in foodstuff. Int. J. Food Microbiol. 113: 164-172.   DOI
42 Tran SL, Guillement E, Gohar M, Lereclus D, Ramarao N. 2010. CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J. Bacteriol. 192: 2638-2642.   DOI