Browse > Article
http://dx.doi.org/10.4014/jmb.1504.04080

Role of flgA for Flagellar Biosynthesis and Biofilm Formation of Campylobacter jejuni NCTC11168  

Kim, Joo-Sung (Korea Food Research Institute)
Park, Changwon (Korea Food Research Institute)
Kim, Yun-Ji (Korea Food Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.11, 2015 , pp. 1871-1879 More about this Journal
Abstract
The complex roles of flagella in the pathogenesis of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are important. Compared with the wild-type, an insertional mutation of the flgA gene (cj0769c) demonstrated significant decrease in the biofilm formation of C. jejuni NCTC11168 on major food contact surfaces, such as polystyrene, stainless steel, and borosilicate glass. The flgA mutant was completely devoid of flagella and non-motile whereas the wild-type displayed the full-length flagella and motility. In addition, the biofilm formation of the wild-type was inversely dependent on the viscosity of the media. These results support that flagellar-mediated motility plays a significant role in the biofilm formation of C. jejuni NCTC11168. Moreover, our adhesion assay suggests that it plays an important role during biofilm maturation after initial attachment. Furthermore, C. jejuni NCTC11168 wild-type formed biofilm with a net-like structure of extracellular fiber-like material, but such a structure was significantly reduced in the biofilm of the flgA mutant. It supports that the extracellular fiber-like material may play a significant role in the biofilm formation of C. jejuni. This study demonstrated that flgA is essential for flagellar biosynthesis and motility, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.
Keywords
Campylobacter jejuni; flgA; biofilm; flagella; motility; extracellular fiber-like material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carrillo CD, Taboada E, Nash JHE, Lanthier P, Kelly J, Lau PC, et al. 2004. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279: 20327-20338.   DOI
2 Barrero-Tobon AM, Hendrixson DR. 2012. Identification and analysis of flagellar coexpressed determinants (Feds) of Campylobacter jejuni involved in colonization. Mol. Microbiol. 84: 352-369.   DOI
3 Bronowski C, James CE, Winstanley C. 2014. Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol. Lett. 356: 8-19.   DOI
4 Caiazza NC, Merritt JH, Brothers KM, O’Toole GA. 2007. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J. Bacteriol. 189: 3603-3612.   DOI
5 Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322.   DOI
6 Fields JA, Thompson SA. 2008. Campylobacter jejuni CsrA mediates oxidative stress responses, biofilm formation, and host cell invasion. J. Bacteriol. 190: 3411-3416.   DOI
7 Golden NJ, Acheson DWK. 2002. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect. Immun. 70: 1761-1771.   DOI
8 Guerry P. 2007. Campylobacter flagella: not just for motility. Trends Microbiol. 15: 456-461.   DOI
9 Gunther NW IV, Chen CY. 2009. The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiol. 26: 44-51.   DOI
10 Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95-108.   DOI
11 Kim J, Artymovich KA, Hall DF, Smith EJ, Fulton R, Bell J, et al. 2012. Passage of Campylobacter jejuni through the chicken reservoir or mice promotes phase variation in contingency genes Cj0045 and Cj0170 that strongly associates with colonization and disease in a mouse model. Microbiology 158: 1304-1316.   DOI
12 Harris NV, Weiss NS, Nolan CM. 1986. The role of poultry and meats in the etiology of Campylobacter jejuni/coli enteritis. Am. J. Public Health 76: 407-411.   DOI
13 Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW. 2006. Biofilm formation in Campylobacter jejuni. Microbiology 152: 387-396.   DOI
14 Kalmokoff M, Lanthier P, Tremblay T, Foss M, Lau PC, Sanders G, et al. 2006. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol. 188: 4312-4320.   DOI
15 Konkel ME, Klena JD, Rivera-Amill V, Monteville MR, Biswas D, Raphael B, Mickelson J. 2004. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol. 186: 3296-3303.   DOI
16 Kumar CG, Anand SK. 1998. Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol. 42: 9-27.   DOI
17 Lin J, Wang Y, Hoang KV. 2009. Systematic identification of genetic loci required for polymyxin resistance in Campylobacter jejuni using an efficient in vivo transposon mutagenesis system. Foodborne Pathog. Dis. 6: 173-185.   DOI
18 Mah TC, O’Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9: 34-39.   DOI
19 Moe KK, Mimura J, Ohnishi T, Wake T, Yamazaki W, Nakai M, Misawa N. 2010. The mode of biofilm formation on smooth surfaces by Campylobacter jejuni. J. Vet. Med. Sci. 72: 411-416.   DOI
20 O’Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295-304.   DOI
21 Murphy C, Carroll C, Jordan KN. 2006. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 100: 623-632.   DOI
22 Nguyen VT, Turner MS, Dykes GA. 2011. Influence of cell surface hydrophobicity on attachment of Campylobacter to abiotic surfaces. Food Microbiol. 28: 942-950.   DOI
23 Nambu T, Kutsukake K. 2000. The Salmonella FlgA protein, a putative periplasmic chaperone essential for flagellar Pring formation. Microbiology 146: 1171-1178.   DOI
24 Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30: 285-293.   DOI
25 Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA. 2007. Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl. Environ. Microbiol. 73: 1908-1913.   DOI
26 Reuter M, Mallett A, Pearson BM, van Vliet AHM. 2010. Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl. Environ. Microbiol. 76: 2122-2128.   DOI
27 Song YC, Jin S, Louie H, Ng D, Lau R, Zhang Y, et al. 2004. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol. 53: 541-553.   DOI
28 Toutain CM, Zegans ME, O’Toole GA. 2005. Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J. Bacteriol. 187: 771-777.   DOI
29 Svensson SL, Pryjma M, Gaynor EC. 2014. Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS One 9: e106063.   DOI
30 Teitzel GM, Parsek MR. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69: 2313-2320.   DOI
31 van Vliet AH, Wood AC, Henderson J, Wooldridge K, Ketley JM. 1998. 7.7 Genetic manipulation of enteric Campylobacter species. Methods Microbiol. 27: 407-419.   DOI
32 Watnick P, Kolter R. 2000. Biofilm, city of microbes. J. Bacteriol. 182: 2675-2679.   DOI
33 Wösten MMSM, Wagenaar JA, van Putten JPM. 2004. The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J. Biol. Chem. 279: 16214-16222.   DOI
34 Young KT, Davis LM, DiRita VJ. 2007. Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol. 5: 665-679.   DOI