Browse > Article
http://dx.doi.org/10.4014/jmb.1507.07030

Bacterial Cell Surface Display of a Multifunctional Cellulolytic Enzyme Screened from a Bovine Rumen Metagenomic Resource  

Ko, Kyong-Cheol (Industrial Microbiology and Bioprocess Research Center, Integrated Biorefinery Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Binna (Industrial Microbiology and Bioprocess Research Center, Integrated Biorefinery Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Cheong, Dae-Eun (Industrial Microbiology and Bioprocess Research Center, Integrated Biorefinery Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Han, Yunjon (Industrial Microbiology and Bioprocess Research Center, Integrated Biorefinery Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Choi, Jong Hyun (Industrial Microbiology and Bioprocess Research Center, Integrated Biorefinery Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Song, Jae Jun (Industrial Microbiology and Bioprocess Research Center, Integrated Biorefinery Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.11, 2015 , pp. 1835-1841 More about this Journal
Abstract
A cell surface display system for heterologous expression of the multifunctional cellulase, CelEx-BR12, in Escherichia coli was developed using truncated E. coli outer membrane protein C (OmpC) as an anchor motif. Cell surface expression of CelEx-BR12 cellulase in E. coli harboring OmpC-fused CelEx-BR12, designated MC4100 (pTOCBR12), was confirmed by fluorescence-activated cell sorting and analysis of outer membrane fractions by western blotting, which verified the expected molecular mass of OmpC-fused CelEx-BR12 (~72 kDa). Functional evidence for exocellulase activity was provided by enzymatic assays of whole cells and outer membrane protein fractions from E. coli MC4100 (pTOCBR12). The stability of E. coli MC4100 (pTOCBR12) cellulase activity was tested by carrying out repeated reaction cycles, which demonstrated the reusability of recombinant cells. Finally, we showed that recombinant E. coli cells displaying the CelEx-BR12 enzyme on the cell surface were capable of growth using carboxymethyl cellulose as the sole carbon source.
Keywords
Cell surface display; multifunctional cellulolytic enzyme; E. coli OmpC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58.   DOI
2 Clarke AJ. 1997. Biodegradation of Cellulose: Enzymology and Biotechnology, pp. 23-68. Technomic Publishing, Lancaster.
3 Cornelis P. 2000. Expressing genes in different Escherichia coli compartments. Curr. Opin. Biotechnol. 11: 450-454.   DOI
4 Kim JY, Lee JY, Shin YS, Kim GJ. 2009. Mining and identification of a glucosidase family enzyme with high activity toward the plant extract indicant. J. Mol. Catal. B Enzym. 57: 284-291.   DOI
5 Choi JH, Choi JI, Lee SY. 2005. Display of proteins on the surface of Escherichia coli by C-terminal deletion fusion to the Salmonella typhimurium OmpC. J. Microbiol. Biotechnol. 15: 141-146.
6 Henrissat B, Driguez H, Viet C, Schülein M. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 3: 722-726.   DOI
7 Ito J, Kosugi A, Tanaka T, Kuroda K, Shibasaki S, Ogino C, et al. 2009. Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. Appl. Environ. Microbiol. 75: 4149-4154.   DOI
8 Kim KY, Kim MD, Han NS, Seo JH. 2002. Display of Bacillus macerans cyclodextrin glucanotransferase on cell surface of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 12: 411-416.
9 Ko KC, Han YJ, Cheong DE, Choi JH, Song JJ. 2013. Strategy for screening metagenomic resources for exocellulase activity using a robotic, high-throughput screening system. J. Microbiol. Methods 94: 311-316.   DOI
10 Ko KC, Han YJ, Choi JH, Kim GJ, Lee SG, Song JJ. 2011. A novel bifunctional endo-/exo-type cellulose from an anaerobic ruminal bacterium. Appl. Microbiol. Biotechnol. 89: 1453-1462.   DOI
11 Ko KC, Lee JH, Han YJ, Choi JH, Song JJ. 2013. A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria. Biochem. Biophys. Res. Commun. 441: 567-572.   DOI
12 Lee JS, Shin KS, Pan JG, Kim CJ. 2000. Surface-displayed viral antigens on Salmonella carrier vaccine. Nat. Biotechnol. 18: 645-648.   DOI
13 Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577.   DOI
14 Lee SY, Choi JH, Xu Z. 2003. Microbial cell-surface display. Trends Biotechnol. 21: 45-52.   DOI
15 Liljeqvist S, Samuelson P, Hansson M, Nguyen TN, Binz H, Ståhl S. 1997. Surface display of the cholera toxin B subunit on Staphylococcus xylosus and Staphylococcus carnosus. Appl. Environ. Microbiol. 63: 2481-2488.
16 Lin L, Kan X, Yan H, Wang D. 2012. Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains. Electron. J. Biotechnol. 15: 1-7.   DOI
17 Tanaka T, Yamada R, Ogino C, Kondo A. 2012. Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl. Microbiol. Biotechnol. 95: 577-591.   DOI
18 Park SJ, Georgiou G, Lee SY. 1999. Secretory production of recombinant protein by a high cell density culture of a protease negative mutant Escherichia coli strain. Biotechnol. Prog. 15: 164-167.   DOI
19 Puente JL, Juárez D, Bobadilla M, Arias CF, Calva E. 1995. The Salmonella ompC gene: structure and use as a carrier for heterologous sequences. Gene 156: 1-9.   DOI
20 Stahl S, Uhlen M. 1997. Bacterial surface display: trends and progress. Trends Biotechnol. 15: 185-192.   DOI
21 Tsai SL, DaSilva NA, Chen W. 2013. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth. Biol. 2: 14-21.   DOI
22 Tsai SL, Oh J, Singh S , Chen R, Chen W . 2009. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 75: 6087-6093.   DOI
23 Xu Z, Lee SY. 1999. Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl. Environ. Microbiol. 65: 5142-5147.
24 van Bloois E, Winter RT, Kolmar H, Fraaije MW. 2011. Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol. 29: 79-86.   DOI
25 Wieczorek AS, Martin VJJ. 2010. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microb. Cell Fact. 9: 69.   DOI
26 Wu CH, Mulchandani A, Chen W. 2008. Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol. 16: 181-188.   DOI