Browse > Article
http://dx.doi.org/10.4014/jmb.1501.01086

In Vitro Inhibition of 4-Nitroquinoline-1-Oxide Genotoxicity by Probiotic Lactobacillus rhamnosus IMC501  

Bocci, Alessandro (Department of Chemistry, Biology and Biotechnology, University of Perugia)
Sebastiani, Bartolomeo (Department of Chemistry, Biology and Biotechnology, University of Perugia)
Trotta, Francesca (Department of Chemistry, Biology and Biotechnology, University of Perugia)
Federici, Ermanno (Department of Chemistry, Biology and Biotechnology, University of Perugia)
Cenci, Giovanni (Department of Chemistry, Biology and Biotechnology, University of Perugia)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.10, 2015 , pp. 1680-1686 More about this Journal
Abstract
Inhibition of 4-nitroquinoline-1-oxide (4-NQO) genotoxicity by a probiotic strain of Lactobacillus rhamnosus (IMC501) was assessed by the prokaryotic short-term bioassay SOSChromotest, using Escherichia coli PQ37 as the target organism. Results showed the ability of strain IMC501 to rapidly and markedly counteract, in vitro, the DNA damage originated by the considered genotoxin. The inhibition was associated with a spectroscopic hypsochromic shift of the original 4-NQO profile and progressive absorbance increase of a new peak. IR-Raman and GC-MS analyses confirmed the disappearance of 4-NQO after contact with the microorganism, showing also the absence of any genotoxic molecule potentially available for metabolic activation (i.e., 4-hydroxyaminoquinoline-1-oxide and 4-nitrosoquinoline-1-oxide). Furthermore, we have shown the presence of the phenyl-quinoline and its isomers as major non-genotoxic conversion products, which led to the hypothesis of a possible pattern of molecular transformation. These findings increase knowledge on lactobacilli physiology and contribute to the further consideration of antigenotoxicity as a nonconventional functional property of particular probiotic strains.
Keywords
Probiotics; Lactobacillus rhamnosus; antigenotoxicity; 4-nitroquinoline-1-oxide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Corsetti A, Caldini G, Mastrangelo M, Trotta F, Valmorri S, Cenci G. 2008. Raw milk traditional Italian ewe cheeses as a source of Lactobacillus casei strains with acid-bile resistance and antigenotoxic properties. Int. J. Food Microbiol. 125: 330-335.   DOI
2 Gratz S, Wu Qk, El-Nezami H, Juvonen RO, Mikkänen H, Turner PC. 2007. Lactobacillus rhamnosus strain GG reduces aflatoxin B1 transport, metabolism and toxicity in Caco-2 cells. Appl. Environ. Microbiol. 73: 3958-3964.   DOI
3 Benson AM. 1993. Conversion of 4-nitroquinoline 1-oxide (4-NQO) to 4-hydroxyaminoquinoline 1-oxide by a dicumarolresistant hepatic 4NQO nitroreductase in rats and mice. Biochem. Pharmacol. 46: 1217-1221.   DOI
4 Bond TJ, Young KL, Andrus TT. 1970. Characteristics of growth inhibition of Lactobacillus casei by 4-nitroquinoline-N-oxide. Appl. Microbiol. 20: 536-538.
5 Caldini G, Trotta F, Cenci G. 2002. Inhibition of 4-nitroquinoline-1-oxide genotoxicity by Bacillus strains. Res. Microbiol. 153: 165-171.   DOI
6 Caldini G, Trotta F, Corsetti A, Cenci G. 2008. Evidence for in vitro anti-genotoxicity of cheese non-starter lactobacilli. Antonie van Leeuwenhoek 93: 51-59.   DOI
7 Cenci G, Caldini G, Trotta F, Bosi P. 2008. In vitro inhibitory activity of probiotic spore-forming bacilli against genotoxins. Lett. Appl. Microbiol. 46: 331-337.   DOI
8 Cenci G, Rossi J, Trotta F, Caldini G. 2002. Lactic acid bacteria isolated from dairy products inhibit genotoxic effect of 4-nitroquinoline-1-oxide in SOS-Chromotest. Syst. Appl. Microbiol. 25: 483-490.   DOI
9 Commane D, Hughes R, Short C, Rowland I. 2005. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat. Res. 591: 276-289.   DOI
10 Dominici L, Villarini M, Trotta F, Federici E, Cenci G, Moretti M. 2014. Protective effects of probiotic Lactobacillus rhamnosus IMC501 in mice treated with PhIP. J. Microbiol. Biotechnol. 24: 371-378.   DOI
11 Quillardet P, Hofnung M. 1993. The SOS-Chromotest: a review. Mutat. Res. 297: 235-279.   DOI
12 de Olivera IM, Henriques JAP, Bonatto D. 2007. In silico identification of a new group of specific bacterial and fungal nitroreductase-like proteins. Biochem. Biophys. Res. Commun. 335: 919-925.   DOI
13 Dìaz Duran LT, Olivar Rincón N, Puerto Galvis CE, Kouznetsov VV, Fuentes Lorenzo JL. 2013. Genotoxicity risk assessment of diversely substituted quinolines using the SOS chromotest. Environ. Toxicol. 30: 278-292.   DOI
14 Enmoto N, Sato K, Miller EC, Miller JA. 1968. Reactivity of diacetyl derivate of the carcinogen 4-hydroxyquinoline-1-oxyde with DNA, RNA, and other nucleophiles. Life Sci. 17: 1025-1032.   DOI
15 Fann YC, Methos-Dickey CA, Winston GW, Sygula A, Rao DNR, Kandiiska MB, Mason RP. 1999. Enzymatic and nonenzymatic production of free radicals from the carcinogens 4-nitroquinoline N-oxide and 4-hydroxylaminoquinoline Noxide. Chem. Res. Toxicol. 12: 450-458.   DOI
16 Fronza G, Campomenosi P, Iannone R, Abbondandolo A. 1992. The 4-nitroquinoline 1-oxide mutational spectrum in single-stranded DNA is characterized by guanine to pyrimidine transversions. Nucleic Acids Res. 20: 1283-1287.   DOI
17 Gosai V, Ambalam P, Raman M, Kothari CR, Kothari RK, Vyas BRM, Sheth NR. 2011. Protective effect of Lactobacillus rhamnosus 231 against N-methyl-N’-nitro-N-nitrosoguanidine in animal model. Gut Microbes 2: 319-325.   DOI
18 Guillen H, Curiel JA, Landete JM, Nuñoz R, Herraiz T. 2009. Characterization of a nitroreductase with selective nitroreduction properties in the food and intestinal lactic acid bacterium Lactobacillus plantarum WCFS1. J. Agric. Food Chem. 57: 10457-10465.   DOI
19 Kanojia D, Vaidya MM. 2006. 4-Nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral Oncol. 42: 655-667.   DOI
20 Villarini M, Caldini G, Moretti M, Trotta F, Pasquini R, Cenci G. 2008. Modulatory activity of a Lactobacillus casei strain on 1,2-dimethylhydrazine-induced genotoxicity in rats. Environ. Mol. Mutagen. 49: 192-199.   DOI
21 Haskard CA, El-Nezami HS, Kankaanpää PE, Salminen S, Ahokas JT. 2001. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microbiol. 67: 3086-3091.   DOI
22 Ma F, Yuan G, Meng L, Oda Y, Hu J. 2012. Contribution of flumequine and nitroarenes to the genotoxicity of river and ground waters. Chemosphere 88: 476-483.   DOI
23 Nair PP, Davis KE, Shami S, Lagerholm S. 2000. The induction of SOS function in Escherichia coli K-12/PQ37 by 4-nitroquinoline oxide (4-NQO) and fecapentaenes-12 and -14 is bile salt sensitive: implications for colon carcinogenesis. Mutat. Res. 447: 179-185.   DOI
24 Poletto NP, Henriques JAP. 2010. Relationship between endoplasmic reticulum and Golgi-associated calcium homeostasis and 4-NQO-induced DNA repair in Saccharomyces cerevisiae. Arch. Microbiol. 192: 247-257.   DOI
25 Pool-Zobel BL, Neudecker C, Domizlaff I, Ji S, Schillinger U, Rumney C, et al. 1996. Lactobacillus- and Bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr. Cancer 26: 365-380.   DOI
26 Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. 2008. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev. 32: 474-500.   DOI
27 Purohit V, Basu AK. 2000. Mutagenicity of nitroaromatic compounds. Chem. Res. Toxicol. 13: 673-692.   DOI
28 Raipulis J, Toma MM, Semjonovs P. 2005. The effect of probiotics on genotoxicity of furazolidone. Int. J. Food Microbiol. 102: 343-347.   DOI
29 Reinhard S, Gerhard S, Verena K, Knasmüller S. 2008. Binding of heterocyclic aromatic amines by lactic acid bacteria: results of a comprehensive screening trial. Mol. Nutr. Food Res. 52: 322-329.   DOI
30 Spain JC. 1995. Bacterial degradation of nitroaromatic compounds under aerobic conditions, pp. 19-35. In Spain JC (ed.). Environmental Science Research, Vol. 49. Springer Science, New York.
31 Trotta F, Caldini G, Dominici L, Federici E, Tofalo R, Schirone M, et al. 2012. Food-borne yeasts as DNAbioprotective agents against model genotoxins. Int. J. Food Microbiol. 153: 275-280.   DOI
32 Verdenelli MC, Ghelfi F, Silvi S, Orpianesi C, Cecchini C, Cresci A. 2009. Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. Eur. J. Nutr. 48: 355-363.   DOI
33 Verdenelli MC, Ricciutelli M, Gigli E, Cenci G, Trotta F, Caldini G, et al. 2010. Investigation of the antigenotoxic properties of the prebiotic Lactobacillus rhamnosus IMC501® by gas chromatography-mass spectrometry. Ital. J. Food Sci. 22: 473-478.
34 Walia S, Bhushan K, Sood S, Kanwar SS. 2014. Exhibition of DNA-bioprotective activity by microflora of traditional fermented foods of North-Western Himalayas. Food Res. Int. 55: 176-180.   DOI
35 Ambalam P, Dave JM, Nair BM, Vyas BRM. 2011. In vitro mutagen binding and antimutagenic activity of human Lactobacillus rhamnosus 231. Anaerobe 17: 217-222.   DOI
36 Wang F, Jiang L, Liu AP, Guo XH, Ren FZ. 2008. Analysis of antigenotoxicity of Lactobacillus salivarius by high performance liquid chromatography. Chin. J. Anal. Chem. 36: 740-744.   DOI
37 Zhang M, Qiao X, Zhao L, Jiang L, Ren F. 2011. Lactobacillus salivarius REN counteracted unfavorable 4-nitroquinoline-1-oxide-induced changes in colonic microflora of rats. J. Microbiol. 49: 877-883.   DOI
38 Zhang XB, Ohta Y. 1991. Binding of mutagenic pyrolysates to fractions of intestinal bacterial cells. Can. J. Microbiol. 38: 614-617.   DOI
39 Caldini G, Trotta F, Villarini M, Moretti M, Pasquini R, Scassellati-Sforzolini G, Cenci G. 2005. Screening of potential lactobacilli antigenotoxicity by microbial and mammalian cell-based tests. Int. J. Food Microbiol. 102: 37-47.   DOI