Browse > Article
http://dx.doi.org/10.4014/jmb.1505.05099

Roles of the Peptide Transport Systems and Aminopeptidase PepA in Peptide Assimilation by Helicobacter pylori  

Ki, Mi Ran (Department of Bioinformatics & Graduate School of Biotechnology, Korea University)
Lee, Ji Hyun (Department of Bioinformatics & Graduate School of Biotechnology, Korea University)
Yun, Soon Kyu (Department of Bioinformatics & Graduate School of Biotechnology, Korea University)
Choi, Kyung Min (Department of Bioinformatics & Graduate School of Biotechnology, Korea University)
Hwang, Se Young (Department of Bioinformatics & Graduate School of Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.10, 2015 , pp. 1629-1633 More about this Journal
Abstract
Peptide assimilation in Helicobacter pylori necessitates a coordinated working of the peptide transport systems (PepTs) and aminopeptidase (PepA). We found that H. pylori hydrolyzes two detector peptides, L-phenylalanyl- L-3-thiaphenylalanine (PSP) and L-phenylalanyl- L-2-sulfanilylglycine (PSG), primarily before intake and excludes their antibacterial effects, whereas Escherichia coli readily transports them with resultant growth inhibition. PSP assimilation by H. pylori was inhibited by aminopeptidase inhibitor bestatin, but not by dialanine or cyanide-m-chlorophenylhydrazone, contrary to that of E. coli. RT- and qRT-PCR analyses showed that H. pylori may express first the PepTs (e.g., DppA and DppB) and then PepA. In addition, western blot analysis of PepA suggested that the bacterium secretes PepA in response to specific inducers.
Keywords
Helicobacter pylori; peptide transport; PepTs; PepA; detector peptides;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Baltrus DA, Amieva MR, Covacci A, Lowe TM, Merrell DS, Ottemann KM. 2009. The complete genome sequence of Helicobacter pylori strain G27. J. Bacteriol. 191: 447-448.   DOI
2 Abouhamad WN, Manson M, Gibson MM, Higgins CF. 1991. Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol. Microbiol. 5: 1035-1047.   DOI
3 Argent RH, Thomas RJ, Letley DP, Rittig MG, Hardie KR, Atherton JC. 2008. Functional association between the Helicobacter pylori virulence factors VacA and CagA. J. Med. Microbiol. 57: 145-150.   DOI
4 Blaser MJ. 1990. Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J. Infect. Dis. 161: 626-633.   DOI
5 Choi KM, Shin KS, Yun SK, Ki MR, Hwang SY. 2007. Spectrophotometric determination of peptide transport with chromogenic peptide mimetics. Anal. Biochem. 367: 167-172.   DOI
6 Dong L, Cheng N, Wang MW, Zhang J, Shu C, Zhu DX. 2005. The leucyl aminopeptidase from Helicobacter pylori is an allosteric enzyme. Microbiology 151: 2017-2023.   DOI
7 Goodell EW, Higgins CF. 1987. Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli. J. Bacteriol. 169: 3861-3865.   DOI
8 Hwang SY, Berges DA, Taggart JJ, Gilvarg C. 1989. Portage transport of sulfanilamide and sulfanilic acid. J. Med. Chem. 32: 694-698.   DOI
9 Hwang SY, Ki MR, Cho SY, Yoo ID. 1995. Transport of Sulfanilic acid via microbial dipeptide transport system. J. Microbiol. Biotechnol. 5: 315-318.
10 Ki MR, Yun SK, Choi KM, Hwang SY. 2013. Glutamineinduced production and secretion of Helicobacter pylori γ-glutamyltranspeptidase at low pH and its putative role in glutathione transport. J. Microbiol. Biotechnol. 13: 673-679.
11 Kingsbury WD, Boehm JC, Perry D, Gilvarg C. 1984. Portage of various compounds into bacteria by attachment to glycine residues in peptides. Proc. Natl. Acad. Sci. USA 81: 4573-4576.   DOI
12 Lazazzera BA. 2001. The intracellular function of extracellular signaling peptides. Peptides 22: 1519-1527   DOI
13 Mager S, Sloan J. 2003. Possible role of amino acids, peptides, and sugar transporter in protein removal and innate lung defense. Eur. J. Pharmacol. 479: 263-267.   DOI
14 Reynolds DJ, Penn CW. 1994. Characteristics of Helicobacter pylori growth in a defined medium and determination of its amino acid requirements. Microbiology 140: 2649-2656.   DOI
15 Marshall BJ, Warren JR. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311-1315.   DOI
16 Mendz GL, Hazell SL. 1993. Glucose phosphorylation in Helicobacter pylori. Arch. Biochem. Biophys. 300: 522-525.   DOI
17 Mendz GL, Hazell SL, van Gorkom L. 1994. Pyruvate metabolism in Helicobacter pylori. Arch. Microbiol. 162: 187-192.   DOI
18 Parsonnet J, Hansen S, Rodriguez L, Gelb AB, Warnke RA, Jellum E, et al. 1994. Helicobacter pylori infection and the risk of gastric lymphoma. N. Engl. J. Med. 325: 1127-1131.   DOI
19 Payne JW, Bell G. 1979. Direct determination of the properties of peptide transport systems in Escherichia coli, using a fluorescent-labeling procedure. J. Bacteriol. 137: 447-455.
20 Perry D, Gilvarg C. 1984. Spectrophotometric determination of affinities of peptides for their transport systems in Escherichia coli. J. Bacteriol. 160: 943-948.
21 Rokkas T, Pistiolas D, Sechopoulos P, Robotis I, Margantinis G. 2007. The long-term impact of Helicobacter pylori eradication on gastric histology: a systematic review and meta-analysis. Helicobacter 12: 32-38.   DOI
22 Smid EJ, Plapp R, Konings WN. 1989. Peptide uptake is essential for growth of Lactococcus lactis on the milk protein casein. J. Bacteriol. 171: 6135-6140.   DOI
23 Yun SK, Choi KM, Uhm CS, Park JK, Hwang SY. 2005. Characteristics of peptide assimilation by Helicobacter pylori: evidence for involvement of cell surface peptidase. J. Microbiol. Biotechnol. 15: 899-902.
24 Stark RM, Suleiman MS, Hassan IJ, Greenman J, Millar MR. 1997. Amino acid utilization and deamination of glutamine and asparagine by Helicobacter pylori. J. Med. Microbiol. 46: 793-800.   DOI
25 Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T. 1976. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J. Antibiot. 29: 97-99.   DOI
26 Grunwald S, Krause R, Bruch M, Henle T, Brandsch M. 2006. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. Br. J. Nutr. 95: 1221-1228.   DOI
27 Nedenskov P. 1994. Nutritional requirements for growth of Helicobacter pylori. Appl. Environ. Microbiol. 60: 3450-3453.
28 Pane JW, Smith MW. 1994. Peptide-transport by microorganisms. Adv. Microb. Physiol. 36: 1-80.   DOI
29 Weinberg MV, Maier RJ. 2007. Peptide transport in Helicobacter pylori: roles of Dpp and Opp systems and evidence for additional peptide transporters. J. Bacteriol. 189: 3392-3402.   DOI
30 Yamaoka Y. 2008. Roles of the plasticity regions of Helicobacter pylori in gastroduodenal pathogenesis. J. Med. Microbiol. 57: 545-553.   DOI