Browse > Article
http://dx.doi.org/10.4014/jmb.1312.12037

Novel Anticandidal Activity of a Recombinant Lampetra japonica RGD3 Protein  

Wu, Caiping (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University)
Lu, Li (Department of Pharmacology, Dalian Medical University)
Zheng, Yuanyuan (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University)
Liu, Xin (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University)
Xiao, Rong (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University)
Wang, Jihong (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University)
Li, Qingwei (Liaoning Provincial Key Labouratory of Biotechnology and Drug Discovery, Department of Biological Sciences, Liaoning Normal University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.7, 2014 , pp. 905-913 More about this Journal
Abstract
Lj-RGD3, an RGD (Arg-Gly-Asp) toxin protein from the salivary gland of Lampetra japonica, exhibits antifungal activity against Candida albicans. Lj-RGD3 has three RGD motifs and shows homology to histidine-rich glycoprotein. We synthesised two mutant derivatives of Lj-RGD3: Lj-26, which lacks all three RGD motifs and contains no His residues; and Lj-112, which lacks only the three RGD motifs. We investigated the effects of the wild-type and mutated toxins on a gram-positive bacterium (Escherichia coli), a gram-negative bacterium (Staphylococcus aureus), and a fungus (C. albicans). rLj-RGD3 and its mutants exhibited antifungal but not antibacterial activity, as measured by a radial diffusion assay. The C. albicans inhibition zone induced by rLj-112 was larger than that induced by the other proteins, and its inhibitory effect on C. albicans was dose-dependent. In viable-count assays, the rLj-112 MIC was $7.7{\mu}M$, whereas the MIC of the positive control (ketoconazole) was $15{\mu}M$. Time-kill kinetics demonstrated that rLj-112 effectively killed C. albicans at $1{\times}$ and $2{\times}$ MIC within 12 and 6 h, respectively. Electron microscopy analysis showed that rLj-RGD3 and rLj-112 induced C. albicans lysis. Our results demonstrate a novel anticandidal activity for rLj-RGD3 and its mutant derivatives.
Keywords
Lampetra japonica; rLj-RGD3; AMPs; anticandidal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, et al. 2000. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96: 3086-3093.
2 Brogden KA, Guthmiller JM, Salzet M, Zasloff M. 2005. The nervous system and innate immunity: the neuropeptide connection. Nat. Immunol. 6: 558-564.
3 Ciornei CD, Egesten A, Bodelsson M. 2003. Effects of human cathelicidin antimicrobial peptide LL-37 on lipopolysaccharideinduced nitric oxide release from rat aorta in vitro. Acta Anaesthesiol. Scand. 47: 213-220.   DOI   ScienceOn
4 Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM. 2001. Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167: 623-627.   DOI
5 De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, et al. 2000. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192: 1069-1074.   DOI   ScienceOn
6 Elsbach P.2003. What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses. J. Clin. Investig. 111: 1643-1645.   DOI   ScienceOn
7 G usman H, L eone C , Helmerhorst EJ, Nunn M, F lora B , Troxler RF, Oppenheim FG. 2004. Human salivary glandspecific daily variations in histatln concentrations determined by a novel quantitation technique. Arch. Oral Biol. 49: 11.   DOI   ScienceOn
8 Goumon Y, Lugardon K, Kieffer B, Lefevre JF, Van Dorsselaer A, Aunis D, Metz-Boutigue MH.1998. Characterization of antibacterial COOH-terminal proenkephalin-A-derived peptides (PEAP) in infectious fluids. Importance of enkelytin, the antibacterial PEAP209-237 secreted by stimulated chromaffin cells. J. Biol. Chem. 273: 29847-29856.   DOI
9 Gorgani NN, Parish CR, Easterbrook Smith SB, Altin JG. 1997. Histidine-rich glycoprotein binds to human IgG and C1q and inhibits the formation of insoluble immune complexes. Biochemistry 36: 6653-6662.   DOI   ScienceOn
10 Gorgani NN, Theofilopoulos AN. 2007. Contribution of histidine-rich glycoprotein in clearance of immune complexes and apoptoticcells: implications for ameliorating autoimmune diseases. Autoimmunity 40: 260-266.   DOI   ScienceOn
11 Haupt H, Heimburger N.1972. Human serum proteins with high affinity for globulins. Hoppe Seylers Z. Phys-iol. Chem. 353: 1125-1132.   DOI
12 Heimburger N, Haupt H, Kranz T, Baudner S. 1972. Human serum proteins with high affinity to carboxymethylcellulose. II. Physico-chemical and immunological characterization of a histidine-rich 3,8S-2-glycoprotein (CM-protein I). Hoppe Seylers Z. Physiol. Chem. 353: 1133-1140.   DOI
13 Jones AL, Hulett MD, Parish CR. 2005. Histidine-rich glycoprotein: A novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol. Cell Biol. 83: 106-118.   DOI   ScienceOn
14 Juarez JC, Guan X, Shipulina NV, Plunkett ML, Parry GC, Shaw DE, et al. 2002. Histidine-proline-rich glycoprotein has potent antiangiogenic activity mediated through the histidineproline- rich domain. Cancer Res. 62: 5344-5350.
15 Leung LL, Harpel PC, Nachman RL, Rabellino EM.1983. Histidine-rich glycoprotein is present in human platelets and is released following thrombin stimulation. Blood 62: 1016-1021.
16 Koczulla R, Von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, et al. 2003. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Investig. 111: 1665-1672.   DOI   ScienceOn
17 Kowalska K, Carr DB, Lipkowski AW. 2002. Direct antimicrobial properties of substance P. Life Sci. 71: 747-750.   DOI   ScienceOn
18 Koide T, Odani S, Ono T.1982. The N-terminal sequence of human plasma histidine-rich glycoprotein homologous to antithrombin with high affinity for heparin. FEBS Lett. 141: 222-224.   DOI   ScienceOn
19 Lijnen HR, Hoylaerts M, Collen D.1980. Isolation and characteriza-tion of a human plasma protein with affinity for the lysine binding sites in plasminogen. Role in the regulation of fibrino-lysis and identification as histidine-rich glycoprotein. J. Biol. Chem. 255: 214-222.
20 Li J, Post M, Volk R, Gao Y, Li M, Metais C, et al. 2000. PR39, a peptide regulator of angiogenesis. Nat. Med. 6: 49-55.   DOI   ScienceOn
21 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
22 Mor A, Amiche M, Nicolas P. 1994. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry 33: 6642-6650.   DOI   ScienceOn
23 Okumura K, Itoh A, Isogai E, Hirose K, Hosokawa Y, Abiko Y, et al. 2004. C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Lett. 212: 185-194.   DOI   ScienceOn
24 Raj PA, Edgerton M, Levine MJ. 1990. Salivary histatins 5: dependence of sequence,chain lenghth,and helical conformation for candidacidal activity. Biol. Chem. 265: 3898-3950.
25 Olsson AK, Larsson H, Dixelius J, Johansson I, Lee C, Oelling C, et al. 2004. A fragment of histidine-rich glycoprotein is a potent inhibitor of tumor vascularization. Cancer Res. 64: 599-605.   DOI   ScienceOn
26 Pal T, Abraham B, Sonnevend A, Juma P.2006. Conlon JM Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Inter. J. Antimi-crob. Agents 27: 525-529.   DOI   ScienceOn
27 Pollck JJ, Denepitiyal L, Mackay BJ, Iacono VJ. 1984. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on candida albicans. Infect Immun. 44: 701-707.
28 Rydengard V, Olsson AK, Morgelin M, Schmidtchen A. 2007. Histidine-rich glycoprotein exerts antibacterial activity. FEBS J. 274: 377-389.   DOI   ScienceOn
29 Shimizu M, Shigeri Y, Tatsu Y, Yoshikawa S, Yumoto N. 1998. Enhancement of antimicrobial activity of neuropeptide Y by N-terminal truncation. Antimicrob. Agents Chemother. 42: 2745-2746.
30 Schagger H, von Jagow G.1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379.   DOI   ScienceOn
31 Shigekiyo T, Kanazuka M, Azuma H, Ohshima T, Kusaka K, Saito S. 1995. Congenital deficiency of histidine-rich glycoprotein: failure to identify abnormalities in routine laboratory assays of hemostatic function, immunologic function, and trace elements [See comments]. J. Lab. Clin. Med. 125: 719-723.
32 Steiner H, Hultmark D, Engström A, Bennich H, Boman HG. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248.   DOI   ScienceOn
33 Yoo YC, Watanabe R, Koike Y, Mitobe M, Shimazaki K, Watanabe S, Azuma I. 1997. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 237: 624-628   DOI   ScienceOn
34 Territo MC, Ganz T, Selsted ME, Lehrer R. 1989. Monocytechemotactic activity of defensins from human neutrophils. J. Clin. Investig. 84: 2017-2020.   DOI   ScienceOn
35 Vouldoukis I, Shai Y, Nicolas P, Mor A. 1996. Broad spectrum antibiotic activity of the skin-PYY. FEBS Lett. 380: 237-240.   DOI   ScienceOn
36 Wang J, Han X, Yang H, Lu L, Wu Y, Liu X, et al. 2010. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities. Biochimie 92: 1387-1396.   DOI   ScienceOn
37 Zanetti M.2004. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukocyte Biol. 75: 39-48.   DOI
38 Zasloff M. 1987. A class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84: 5449-5453.   DOI   ScienceOn
39 Zeya HI, Spitznagel JK. 1963. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science 142: 1085-1087.   DOI   ScienceOn