Browse > Article
http://dx.doi.org/10.4014/jmb.1403.03035

Exogenous Lytic Activity of SPN9CC Endolysin Against Gram-Negative Bacteria  

Lim, Jeong-A (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Research Institute for Agriculture and Life Sciences, Seoul National University)
Shin, Hakdong (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Research Institute for Agriculture and Life Sciences, Seoul National University)
Heu, Sunggi (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration)
Ryu, Sangryeol (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials and Research Institute for Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.6, 2014 , pp. 803-811 More about this Journal
Abstract
Concerns over drug-resistant bacteria have stimulated interest in developing alternative methods to control bacterial infections. Endolysin, a phage-encoded enzyme that breaks down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle, is reported to be effective for the control of bacterial pathogenic bacteria. Bioinformatic analysis of the SPN9CC bacteriophage genome revealed a gene that encodes an endolysin with a domain structure similar to those of the endolysins produced by the P1 and P22 coliphages. The SPN9CC endolysin was purified with a C-terminal oligo-histidine tag. The endolysin was relatively stable and active over a broad temperature range (from $24^{\circ}C$ to $65^{\circ}C$). It showed maximal activity at $50^{\circ}C$, and its optimum pH range was from pH 7.5 to 8.5. The SPN9CC endolysin showed antimicrobial activity against only gram-negative bacteria and functioned by cutting the glycosidic bond of peptidoglycan. Interestingly, the SPN9CC endolysin could lyse intact gram-negative bacteria in the absence of EDTA as an outer membrane permeabilizer. The exogenous lytic activity of the SPN9CC endolysin makes it a potential therapeutic agent against gram-negative bacteria.
Keywords
SPN9CC endolysin; gram-negative pathogen; biocontrol; antibiotic substitute;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Livermore DM. 2004. The need for new antibiotics. Clin. Microbiol. Infect. 10: 1-9.
2 Loessner MJ. 2005. Bacteriophage endolysins - current state of research and applications. Curr. Opin. Microbiol. 8: 480-487.   DOI   ScienceOn
3 Lu kacik P, Barnard TJ, Hinnebusch BJ, Buchanan SK. 2013. Specific targeting and killing of gram-negative pathogens with an engineered phage lytic enzyme. Virulence 4: 90-91.   DOI
4 L ukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, et al. 2012. Structural engineering of a phage lysin that targets gram-negative pathogens. Proc. Natl. Acad. Sci. USA 109: 9857-9862.   DOI
5 M archler-Bauer A, Anderson JB, Derbyshire MK, DeWeese- Scott C, Gonzales NR, Gwadz M, et al. 2007. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 35: D237-D240.   DOI   ScienceOn
6 M ikoulinskaia GV, Odinokova IV, Zimin AA, Lysanskaya VY, Feofanov SA, Stepnaya OA. 2009. Identification and characterization of the metal ion-dependent L-alanoyl-Dglutamate peptidase encoded by bacteriophage T5. FEBS J. 276: 7329-7342.   DOI   ScienceOn
7 Mir oshnikov KA, Faizullina NM, Sykilinda NN, Mesyanzhinov VV. 2006. Properties of the endolytic transglycosylase encoded by gene 144 of Pseudomonas aeruginosa bacteriophage phiKZ. Biochemistry (Mosc) 71: 300-305.   DOI
8 P aradis-Bleau C, Cloutier I, Lemieux L, Sanschagrin F, Laroche J, Auger M, et al. 2007. Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase. FEMS Microbiol. Lett. 266: 201-209.   DOI   ScienceOn
9 M orita M, Tanji Y, Orito Y, Mizoguchi K, Soejima A, Unno H. 2001. Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against gram-negative bacteria. FEBS Lett. 500: 56-59.   DOI   ScienceOn
10 Na kimbugwe D, Masschalck B, Atanassova M, Zewdie- Bosuner A, Michiels CW. 2006. Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure. Int. J. Food Microbiol. 108: 355-363.
11 N ariya H, Miyata S, Tamai E, Sekiya H, Maki J, Okabe A. 2011. Identification and characterization of a putative endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Appl. Microbiol. Biotechnol. 90: 1973-1979.   DOI
12 Park JT, Johnson MJ. 1949. A submicrodetermination of glucose. J. Biol. Chem. 181: 149-151.
13 Pritchard DG, Dong S, Baker JR, Engler JA. 2004. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150: 2079-2087.   DOI   ScienceOn
14 Sambrook J RD. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
15 Sass P, Bierbaum G. 2007. Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl. Environ. Microbiol. 73: 347-352.   DOI   ScienceOn
16 Scheurwater E, Reid CW, Clarke AJ. 2008. Lytic transglycosylases: bacterial space-making autolysins. Int. J. Biochem. Cell Biol. 40: 586-591.   DOI   ScienceOn
17 Schuch R, Nelson D, Fischetti VA. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418: 884-889.   DOI   ScienceOn
18 Tur ner MS, Hafner LM, Walsh T, Giffard PM. 2004. Identification, characterisation and specificity of a cell wall lytic enzyme from Lactobacillus fermentum B R11. FEMS Microbiol. Lett. 238: 9-15.
19 Shin H, Lee JH, Yoon H, Kang DH, Ryu S. 2014. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC. Appl. Environ. Microbiol. 80: 374-384.   DOI   ScienceOn
20 Su mmer EJ, Berry J, Tran TA, Niu L, Struck DK, Young R. 2007. Rz/Rz1 lysis gene equivalents in phages of gramnegative hosts. J. Mol. Biol. 373: 1098-1112.   DOI   ScienceOn
21 Sun Q, Kuty GF, Arockiasamy A, Xu M, Young R, Sacchettini JC. 2009. Regulation of a muralytic enzyme by dynamic membrane topology. Nat. Struct. Mol. Biol. 16: 1192-1194.   DOI   ScienceOn
22 Tur ner MS, Waldherr F, Loessner MJ, Giffard PM. 2007. Antimicrobial activity of lysostaphin and a Listeria monocytogenes bacteriophage endolysin produced and secreted by lactic acid bacteria. Syst. Appl. Microbiol. 30: 58-67.   DOI   ScienceOn
23 Uch iyama J, Takemura I, Hayashi I, Matsuzaki S, Satoh M, Ujihara T, et al. 2011. Characterization of lytic enzyme open reading frame 9 (ORF9) derived from Enterococcus faecalis bacteriophage phiEF24C. Appl. Environ. Microbiol. 77: 580-585.   DOI   ScienceOn
24 Xu M, Arulandu A, Struck DK, Swanson S, Sacchettini JC, Young R. 2005. Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science 307: 113-117.   DOI   ScienceOn
25 Z dobnov EM, Apweiler R. 2001. InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847-848.   DOI   ScienceOn
26 B riers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CW, Hertveldt K, Lavigne R. 2007. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Mol. Microbiol. 65: 1334-1344.   DOI   ScienceOn
27 Breithaupt H. 1999. The n ew antibiotics. Nat. Biotechnol. 17: 1165-1169.   DOI   ScienceOn
28 Baker JR, Liu C, Dong S, Pritchard DG. 2006. Endopeptidase and glycosidase activities of the bacteriophage B30 lysin. Appl. Environ. Microbiol. 72: 6825-6828.   DOI   ScienceOn
29 B ernhardt TG, Wang IN, Struck DK, Young R. 2002. Breaking free: "protein antibiotics" and phage lysis. Res. Microbiol. 153: 493-501.   DOI   ScienceOn
30 Briers Y, Walmagh M, Lavigne R. 2011. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J. Appl. Microbiol. 110: 778-785.   DOI   ScienceOn
31 D uring K, Porsch P, Mahn A, Brinkmann O, Gieffers W. 1999. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 449: 93-100.   DOI   ScienceOn
32 Fein J E, R ogers HJ. 1976. Autolytic e nzyme-deficient mutants of Bacillus subtilis 168. J. Bacteriol. 127: 1427-1442.
33 Fischetti VA. 2010. Bacteriophage endolysins: a novel antiinfective to control gram-positive pathogens. Int. J. Med. Microbiol. 300: 357-362.   DOI   ScienceOn
34 Hazenberg MP, de Visser H. 1992. Assay for N-acetylmuramyl- L-alanine amidase in serum by determination of muramic acid released from the peptidoglycan of Brevibacterium divaricatum. Eur. J. Clin. Chem. Clin. Biochem. 30: 141-144.
35 F ukushima T, Yao Y, Kitajima T, Yamamoto H, Sekiguchi J. 2007. Characterization of new L,D-endopeptidase gene product CwlK (previous YcdD) that hydrolyzes peptidoglycan in Bacillus subtilis. Mol. Genet. Genomics 278: 371-383.   DOI   ScienceOn
36 Holtje JV, Mirelman D, Sharon N, Schwarz U. 1975. Novel type of murein transglycosylase in Escherichia coli. J. Bacteriol. 124: 1067-1076.
37 Hadzija O. 1974. A simple method for the quantitative determination of muramic acid. Anal. Biochem. 60: 512-517.   DOI   ScienceOn
38 Hawkey PM. 2008. The growing burden of antimicrobial resistance. J. Antimicrob. Chemother. 62: i1-i9.   DOI   ScienceOn
39 Hermoso JA, Garcia JL, Garcia P. 2007. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr. Opin. Microbiol. 10: 461-472.   DOI   ScienceOn
40 Junn H J, Y oun J, Suh KH, Lee SS. 2005. Cloning and expression of Klebsiella phage K11 lysozyme gene. Protein Expr. Purif. 42: 78-84.   DOI   ScienceOn
41 Kikkawa H, Fujinami Y, Suzuki S, Yasuda J. 2007. Identification of the amino acid residues critical for specific binding of the bacteriolytic enzyme of gamma-phage, PlyG, to Bacillus anthracis. Biochem. Biophys. Res. Commun. 363: 531-535.   DOI   ScienceOn
42 K rogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567-580.   DOI   ScienceOn
43 Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132.   DOI
44 Loeffler J M, D jurkovic S , Fischetti VA. 2003. Phage l ytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect. Immun. 71: 6199-6204.   DOI
45 L ai MJ, Lin NT, Hu A, Soo PC, Chen LK, Chen LH, Chang KC. 2011. Antibacterial activity of Acinetobacter baumannii phage AB2 endolysin (LysAB2) against both gram-positive and gram-negative bacteria. Appl. Microbiol. Biotechnol. 90: 529-539.   DOI
46 Lim JA, Shin H, Kang DH, Ryu S. 2012. Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S. Res. Microbiol. 163: 233-241.   DOI   ScienceOn