Browse > Article
http://dx.doi.org/10.4014/jmb.1308.08050

Lipid Production by a $CO_2$-Tolerant Green Microalga, Chlorella sp. MRA-1  

Zheng, Yanlin (College of Environmental Science and Engineering, Ocean University of China)
Yuan, Cheng (Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences)
Liu, Junhan (Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences)
Hu, Guangrong (Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences)
Li, Fuli (Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.5, 2014 , pp. 683-689 More about this Journal
Abstract
Since $CO_2$ concentrations in industrial flue gases are usually 10%-20%, one of the prerequisites for efficient $CO_2$ removal by algae is the level of tolerance of microalgal species to exposure to high concentrations of $CO_2$. A newly isolated microalgal strain, Chlorella sp. MRA-1, could retain growth with high concentrations of $CO_2$ up to 15%. The highest lipid productivity for Chlorella sp. MRA-1 was 0.118 g/l/day with a 5% $CO_2$ concentration. Octadecenoic acid and hexadecanoic acid, the main components of biodiesel, accounted for 70% of the total fatty acids. A lipid content of 52% of dry cell weight was achieved with limited amounts of nitrogen. Chlorella sp. MRA-1 seems to be an ideal candidate for biodiesel production when cultured with high concentrations of $CO_2$.
Keywords
Biodiesel; $CO_2$ tolerance; fatty acid composition; lipid production; microalgae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu J, Yuan C, Hu G, Li F. 2012. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl. Biochem. Biotechnol. 166: 2127-2137.   DOI
2 Liu ZH, Shao HB. 2010. Comments: main developments and trends of international energy plants. Renew. Sustain. Energy Rev. 14: 530-534.   DOI
3 Maeda K, Owada M, Kimura N, Omata K, Karube I. 1995. $CO_{2}$ fixation from the flue-gas on coal-fired thermal powerplant by microalgae. Energy Convers. Manage. 36: 717-720.   DOI   ScienceOn
4 Mandal S, Mallick N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84: 281-291.   DOI   ScienceOn
5 Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232.   DOI   ScienceOn
6 Miron AS, Garciia MCC, Gomez AC, Camacho FG, Grima EM, Chisti Y. 2003. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem. Eng. J. 16: 287-297.   DOI   ScienceOn
7 Demorais M, Costa J. 2007. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ. Convers. Manage. 48: 2169-2173.   DOI   ScienceOn
8 Doucha J, Straka F, Livansky K. 2005. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17: 403-412.   DOI   ScienceOn
9 Fernandez FGA, Gonzalez-Lopez CV, Sevilla JMF, Grima EM. 2012. Conversion of $CO_{2}$ into biomass by microalgae: how realistic a contribution may it be to significant $CO_{2}$ removal? Appl. Microbiol. Biotechnol. 96: 577-586.   DOI
10 Griffiths MJ, Harrison STL. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507.   DOI   ScienceOn
11 Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54: 621-639.   DOI   ScienceOn
12 Jiang LL, Luo SJ, Fan XL, Yang ZM, Guo RB. 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of $CO_{2}$. Appl. Energy 88: 3336-3341.   DOI   ScienceOn
13 Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB. 2001. Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol. 80: 53-62.   DOI   ScienceOn
14 Larson TR, Rees TAV. 1996. Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 32: 388-393.   DOI
15 Lee JS, Sung KD, Kim MS, Park SC, Lee KW. 1996. Current aspects of carbon dioxide fixation by microalgae in Korea. Abstr. Pap. Am. Chem Soc. 212: 119.
16 Andersen T, Andersen F. 2006. Effects of $CO_{2}$ concentration on growth of filamentous algae and Littorella uniflora in a Danish softwater lake. Aquat. Bot. 84: 267-271.   DOI
17 Arancibia-Avila P, Coleman JR, Russin WA, Wilcox LW, Graham JM, Graham LE. 2000. Effects of pH on cell morphology and carbonic anhydrase activity and localization in bloom-forming Mougeotia (Chlorophyta, Charophyceae). Can. J. Bot. 78: 1206-1214.
18 Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 377: 911-917.
19 Borowitzka MA. 1992. Algal biotechnology products and processes - matching science and economics. J. Appl. Phycol. 4: 267-279.   DOI
20 Chihara M, Nakayama T, Inouye I, Kodama M. 1994. Chlorococcum littorale, a new marine green coccoid alga (Chlorococcales, Chlorophyceae). Arch. Protistenkunde 144: 227-235.   DOI
21 Chisti Y. 2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26: 126-131.   DOI   ScienceOn
22 Chiu S, Kao C, Tsai M, Ong S, Chen C, Lin C. 2009. Lipid accumulation and $CO_{2}$ utilization of Nannochloropsis oculata in response to $CO_{2}$ aeration. Bioresour. Technol. 100: 833-838.   DOI   ScienceOn
23 Yuan C, Liu J, Fan Y, Ren X, Hu G, Li F. 2011. Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol. Biofuels 4: 47   DOI
24 Yue L, Chen W. 2005. Isolation and determination of cultural characteristics of a new highly $CO_{2}$ tolerant fresh water microalgae. Energy Convers. Manage. 46: 1868-1876.   DOI   ScienceOn
25 Yun YS, Lee SB, Park JM, Lee CI, Yang JW. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol. 69: 451-455.   DOI   ScienceOn
26 Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM. 1995. The use of microalgae for assimilation and utilization of carbon-dioxide from fossil fuel-fired power-plant fluegas. Energy Convers. Manage. 36: 707-712.   DOI   ScienceOn
27 Zhang K, Miyachi S, Kurano N. 2001. Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl. Microbiol. Biotechnol. 55: 428-433.   DOI   ScienceOn
28 Pratt R, Johnson E. 1964. Lipid content of Chlorella "aerated" with a $CO_{2}$-nitrogen versus a $CO_{2}$-air mixture. J. Pharm. Sci. 53: 1135-1136.   DOI
29 Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol. 101: 5892-5896.   DOI   ScienceOn
30 Huang XX, Huang ZZ, Wen W, Yan JQ. 2013. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J. Appl. Phycol. 25: 129-137.   DOI
31 Takagi M, Karseno, Yoshida T. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223-226.   DOI   ScienceOn
32 Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A. 1990. Effects of $CO_{2}$ concentration during growth on fattyacid composition in microalgae. Plant Physiol. 93: 851-856.   DOI   ScienceOn
33 Wang B, Li Y, Wu N, Lan CQ. 2008. $CO_{2}$ bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79: 707-718.   DOI   ScienceOn
34 Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM. 2010. Selection of microalgae for lipid production under high levels of carbon dioxide. Bioresour. Technol. 101: S71-S74.   DOI   ScienceOn
35 Tang DH, Han W, Li PL, Miao XL, Zhong JJ. 2011. $CO_{2}$ biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different $CO_{2}$ levels. Bioresour. Technol. 102: 3071-3076.   DOI   ScienceOn
36 Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I. 1992. Tolerance of microalgae to high $CO_{2}$ and hightemperature. Phytochemistry 31: 3345-3348.   DOI   ScienceOn
37 Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.   DOI   ScienceOn