Browse > Article
http://dx.doi.org/10.4014/jmb.1309.09035

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix algeriensis NRRL B-24137 and Biochemical Characterization of Two Pyrrothine N-Acyltransferases in This Extract  

Saker, S. (Universite de Toulouse, Laboratoire de Genie Chimique, UMR 5503(CNRS/INPT/UPS), Departement BioSyM, INPT-ENSAT)
Almaksour, Z. Almousa (Universite de Toulouse, Laboratoire de Genie Chimique, UMR 5503(CNRS/INPT/UPS), Departement BioSyM, INPT-ENSAT)
Chorin, A.C. (Universite de Toulouse, Laboratoire de Genie Chimique, UMR 5503(CNRS/INPT/UPS), Departement BioSyM, INPT-ENSAT)
Lebrihi, A. (Universite de Toulouse, Laboratoire de Genie Chimique, UMR 5503(CNRS/INPT/UPS), Departement BioSyM, INPT-ENSAT)
Mathieu, F. (Universite de Toulouse, Laboratoire de Genie Chimique, UMR 5503(CNRS/INPT/UPS), Departement BioSyM, INPT-ENSAT)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.1, 2014 , pp. 26-35 More about this Journal
Abstract
Saccharothrix algeriensis NRRL B-24137 produces naturally different dithiolopyrrolone derivatives. The enzymatic activity of pyrrothine N-acyltransferase was determined to be responsible for the transfer of an acyl group from acyl-CoA to pyrrothine core. This activity was also reported to be responsible for the diversity of the dithiolopyrrolone derivatives. Based on this fact, nine dithiolopyrrolone derivatives were produced in vitro via the crude extract of Sa. algeriensis. Three of them have never been obtained before by natural fermentation: acetoacetyl-pyrrothine, hydroxybutyryl-pyrrothine, and dimethyl thiolutin (holomycin). Two acyltransferase activities, acetyltransferase and benzoyltransferase catalyzing the incorporation of linear and cyclic acyl groups to the pyrrothine core, respectively, were biochemically characterized in this crude extract. The first one is responsible for formation of acetyl-pyrrothine and the second for benzoyl-pyrrothine. Both enzymes were sensitive to temperature changes: For example, the loss of acetyltransferase and benzoyltransferase activity was 53% and 80% respectively after pre-incubation of crude extract for 60 min at $20^{\circ}C$. The two enzymes were more active in neutral and basal media (pH 7-10) than in the acidic one (pH 3-6). The optimum temperature and pH of acetyltransferase were $40^{\circ}C$ and 7, with a $K_m$ value of $7.9{\mu}M$ and a $V_{max}$ of $0.63{\mu}M/min$ when acetyl-CoA was used as limited substrate. Benzoyltransferase had a temperature and a pH optimum at $55^{\circ}C$and 9, a $K_m$ value of $14.7{\mu}M$, and a $V_{max}$ of $0.67{\mu}M/min$ when benzoyl-CoA was used as limited substrate.
Keywords
Saccharothrix algeriensis; dithiolopyrrolone biosynthesis; acetyltransferase; benzoyltransferase; biochemical characterization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Long RM, Lagisetti C, Coates RM, Croteau RB. 2008. Specificity of the N-benzoyl transferase responsible for the last step of Taxol biosynthesis. Arch. Biochem. Biophys. 477: 384-389.   DOI   ScienceOn
2 Merrouche R, Bouras N, Coppel Y, Mathieu F, Monje MC, Sabaou N, Lebrihi A. 2009. Dithiolopyrrolone antibiotic formation induced by adding valeric acid to the culture broth of Saccharothrix algeriensis. J. Nat. Prod. 73: 1164-1166.
3 Oliva B, O'Neill A, Wilson JM, O'Hanlon PJ, Chopra I. 2001. Antimicrobial properties and mode of action of the pyrrothine holomycin. Antimicrob. Agents Chemother. 45: 532-539.   DOI   ScienceOn
4 Pelechano V, Perez-Ortin JE. 2008. The transcriptional inhibitor thiolutin blocks mRNA degradation in yeast. Yeast 25: 85-92.   DOI   ScienceOn
5 Qin Z, Baker AT, Raab A, Huang S, Wang T, Yu Y, et al. 2013. The fish pathogen Yersinia ruckeri produces holomycin and uses an RNA methyltransferase for self-resistance. J. Biol. Chem. 288: 14688-14697.   DOI   ScienceOn
6 Shiozawa H, Shimada A, Takahashi S. 1997. Thiomarinols D, E, F and G, new hybrid antimicrobial antibiotics produced by a marine bacterium; Isolation, structure, and antimicrobial activity. J. Antibiot. (Tokyo) 50: 449-452.   DOI
7 Suzuki H, Ohnishi Y, Horinouchi S. 2007. Arylamine Nacetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus. J. Bacteriol. 189: 2155-2159.   DOI   ScienceOn
8 Tipper DJ. 1973. Inhibition of yeast ribonucleic acid polymerases by thiolutin. J. Bacteriol. 116: 245-256.
9 Webster JM, Li J, Chen G. 2000. Anticancer property of dithiolopyrrolones. United States patent application 6020360.
10 Huang S, Zhao Y, Qin Z, Wang X, Onega M, Chen L, et al. 2011. Identification and heterologous expression of the biosynthetic gene cluster for holomycin produced by Streptomyces clavuligerus. Proc. Biochem. 46: 811-816.   DOI   ScienceOn
11 Jia YF, Wu SL, Isenberg JS, Dai SJ, Sipes JM, Field L, et al. 2010. Thiolutin inhibits endothelial cell adhesion by perturbing Hsp27 interactions with components of the actin and intermediate filament cytoskeleton. Cell Stress Chaperones 15: 165-181.   DOI
12 Jimenez A, Tipper DJ, Davies J. 1973. Mode of action of thiolutin, an inhibitor of macromolecular synthesis in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 3: 729-738.   DOI
13 Kobayashi T, Horinouchi S, Uozumi T, Beppu T. 1987. Biochemical-characterization of streptothricin acetyltransferase coded by the cloned streptothricin-resistance gene of Streptomyces lavendulae. J. Antibiot. (Tokyo) 40: 1016-1022.   DOI
14 Lamari L, Zitouni A, Boudjella H, Badji B, Sabaou N, Lebrihi A, et al. 2002. New dithiolopyrrolone antibiotics from Saccharothrix sp. SA 233 - I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 55: 696-701.   DOI
15 Lamari L, Zitouni A, Dob T, Sabaou N, Lebrihi A, Germain P, et al. 2002. New dithiolopyrrolone antibiotics from Saccharothrix sp. SA 233 - II. Physicochemical properties and structure elucidation. J. Antibiot. 55: 702-706.   DOI
16 Li B, Lyle MPA, Chen G, Li J, Hu K, Tang L, et al. 2007. Substituted 6-amino-4H-[1,2]dithiolo[4,3-b]pyrrol-5-ones: synthesis, structure-activity relationships, and cytotoxic activity on selected human cancer cell lines. Bioorg. Med. Chem. 15: 4601-4608.   DOI   ScienceOn
17 Li B, Walsh CT. 2010. Identification of the gene cluster for the dithiolopyrrolone antibiotic holomycin in Streptomyces clavuligerus. Proc. Natl. Acad. Sci. USA 107: 19731-19735.   DOI   ScienceOn
18 Bradford MM. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
19 Celmer WD, Solomons IA. 1955. The structures of thiolutin and aureothricin, antibiotics containing a unique pyrrolinonodithiole nucleus. J. Am. Chem. Soc. 77: 2861-2865.   DOI
20 Chorin AC, Bijeire L, Monje MC, Baziard G, Lebrihi A, Mathieu F. 2009. Expression of pyrrothine N-acyltransferase activities in Saccharothrix algeriensis NRRL B-24137: new insights into dithiolopyrrolone antibiotic biosynthetic pathway. J. Appl. Microbiol. 107: 1751-1762.   DOI   ScienceOn
21 D'Auria JC, Chen F, Pichersky E. 2002. Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130: 466-476.   DOI   ScienceOn
22 de la Fuente A, Lorenzana LM, Martin JF, Liras P. 2002. Mutants of Streptomyces clavuligerus with disruptions in different genes for clavulanic acid biosynthesis produce large amounts of holomycin: possible cross-regulation of two unrelated secondary metabolic pathways. J. Bacteriol. 184: 6559-6565.   DOI
23 de la Fuente A, Martin JF, Rodriguez-Garcia A, Liras P. 2004. Two proteins with ornithine acetyltransferase activity show different functions in Streptomyces clavuligerus: Oat2 modulates clavulanic acid biosynthesis in response to arginine. J. Bacteriol. 186: 6501-6507.   DOI   ScienceOn
24 Gould SJ, Ohare T, Seaton P, Soodsma J, Tang ZW. 1996. Kinamycin acetyltransferase I from Streptomyces murayamaensis, an apparently large, membrane-associated enzyme. Bioorg. Med. Chem. 4: 987-994.   DOI   ScienceOn
25 Guan QN, Zheng W, Tang SJ, Liu XS, Zinkel RA, Tsui KW, et al. 2006. Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast. Plos Genetics 2: 1924-1943.
26 Guo Y, Chen G, Bin L. 2008. Novel dithiolopyrrolones and their therapeutical applications. Patent WO2008038175. April 3rd 2008.
27 Bai L, Chang M, Shan J, Jiang R, Zhang Y, Zhang R, Li Y. 2011. Identification and characterization of a novel spermidine/ spermine acetyltransferase encoded by gene ste26 from Streptomyces sp 139. Biochimie 93: 1401-1407.   DOI   ScienceOn
28 Bouras N, Mathieu F, Sabaou N, and Lebrihi A. 2006. Effect of amino acids containing sulfur on dithiolopyrrolone antibiotic productions by Saccharothrix algeriensis NRRL B-24137. J. Appl. Microbiol. 100: 390-397.   DOI   ScienceOn
29 Bouras N, Merrouche R, Lamari L, Mathieu F, Sabaou N, Lebrihi A. 2008. Precursor-directed biosynthesis of new dithiolopyrrolone analogs by Saccharothrix algeriensis NRRL B-24137. Proc. Biochem. 43: 1244-1252.   DOI   ScienceOn
30 Bouras N, Mathieu F, Sabaou N, Lebrihi A. 2006. Nutritional requirements for the production of dithiolopyrrolone antibiotics by Saccharothrix algeriensis NRRL B-24137. Enzyme Microb. Technol. 39: 1423-1429.   DOI   ScienceOn
31 Merrouche R, Bouras N, Coppel Y, Mathieu F, Sabaou N, Lebrihi A. 2011. New dithiolopyrrolone antibiotics induced by adding sorbic acid to the culture medium of Saccharothrix algeriensis NRRL B-24137. FEMS Microbiol. Lett. 318: 41-46.   DOI   ScienceOn