Browse > Article
http://dx.doi.org/10.4014/jmb.1304.04015

Gibberellin Production by Newly Isolated Strain Leifsonia soli SE134 and Its Potential to Promote Plant Growth  

Kang, Sang-Mo (School of Applied Biosciences, Kyungpook National University)
Khan, Abdul Latif (Department of Biological Sciences and Chemistry, University of Nizwa)
You, Young-Hyun (College of Life Sciences and Biotechnology, Kyungpook National University)
Kim, Jong-Guk (College of Life Sciences and Biotechnology, Kyungpook National University)
Kamran, Muhammad (School of Applied Biosciences, Kyungpook National University)
Lee, In-Jung (School of Applied Biosciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.1, 2014 , pp. 106-112 More about this Journal
Abstract
Very few plant growth-promoting rhizobacteria (PGPR) are known to produce gibberellins (GAs). The current study aimed to isolate a phytohormone-producing PGP rhizobacterium from soil and assess its potential to enhance plant growth. The newly isolated bacterium was identified as Leifsonia soli sp. SE134 on the basis of partial 16S ribosomal RNA gene sequence. Application of L. soli culture filtrate significantly increased the biomass, hypocotyl, and root lengths of cucumber seeds as compared with non-inoculated sole medium and distilled water treated controls. Furthermore, the PGPR culture was applied to the GA-deficient mutant rice cultivar Waito-C. Treatment with L. soli SE134 significantly increased the growth of Waito-C rice seedlings as compared with controls. Upon chromatographic analysis of L. soli culture, we isolated, detected and quantified different GAs; namely, $GA_1$ ($0.61{\pm}0.15$), $GA_4$ ($1.58{\pm}0.26$), $GA_7$ ($0.54{\pm}0.18$), $GA_8$ ($0.98{\pm}0.15$), $GA_9$ ($0.45{\pm}0.17$), $GA_{12}$ ($0.64{\pm}0.21$), $GA_{19}$ ($0.18{\pm}0.09$), $GA_{20}$ ($0.78{\pm}0.15$), $GA_{24}$ ($0.38{\pm}0.09$), $GA_{34}$ ($0.35{\pm}0.10$), and $GA_{53}$ ($0.17{\pm}0.05$). Plant growth promotion in cucumber, tomato, and young radish plants further evidenced the potential of this strain as a PGP bacterium. The results suggest that GA secretion by L. soli SE134 might prove advantageous for its ameliorative role in crop growth. These findings can be extended for improving the productivity of different crops under diverse environmental conditions.
Keywords
Gibberellins; plant growth promotion; PGPR; Leifsonia soli;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Adesemoye AO, Torbert HA, Kloepper JW. 2009. Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 58: 921-929.   DOI   ScienceOn
2 Amies CR. 1967. A modified formula for the preparation of Stuart's transport medium. Can. J. Public Health 58: 296-300.
3 Atzorn R, Crozier A, Wheeler CT, Sandberg G. 1988. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175: 532-538.   DOI   ScienceOn
4 Evtushenko LI, Dorofeeva LV, Subbotin SA, Cole JR, Tiedje JM. 2000. Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of 'Corynebacterium aquaticum' Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 50: 371-380.
5 Franck C, Lammertyn J, Nicolaï B. 2005. Metabolic profiling using GC-MS to study biochemical changes during longterm storage of pears. Proceedings of $5^{th}$ International Postharvest Symposium, eds. F. Mencarelli and P. Tonutti. Acta Hort. 682: 1991-1998.
6 Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, et al. 1999. Use of plant roots for phytoremediation and molecular farming. Proc. Natl. Acad. Sci. USA 96: 5973-5977.   DOI   ScienceOn
7 Glick BR. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117.   DOI   ScienceOn
8 Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M. 2001. The plant-growthpromoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant 111: 206-211.   DOI   ScienceOn
9 Hao DC, G e GB, Yang L . 2008. B acterial d iversity o f Taxus rhizosphere: culture-independent and culture-dependent approaches. FEMS Microbiol. Lett. 284: 204-212.   DOI   ScienceOn
10 Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion. Ann. Microbiol. 60: 579-598.   DOI   ScienceOn
11 Hedden P. 1997. The oxidases of gibberellin biosynthesis: their function and mechanism. Physiol. Plant 101: 709-719.   DOI   ScienceOn
12 Adachi M, Sako Y, Ishida Y. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol. 32: 424-432.   DOI   ScienceOn
13 MacMillan J. 2002. Occurrence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Regul. 20: 387-442.
14 Madhaiyan M, Selvaraj P, Lee JS, Murugaiyan S, Lee KC, Subbiah S. 2010. Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60: 1322-1327.   DOI   ScienceOn
15 Piccoli P, Masciarelli O, Bottini R. 1996. Metabolism of 17,17 [$_{2}H^{2}$]-gibberellins A4, A9, and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis 21: 167-178.
16 Piccoli P, Lucangeli D, Schneider G, Bottini R. 1997. Hydrolysis of [17,17-$_{2}H^{2}$] gibberellin A20-glucoside and [17,17- $_{2}H^{2}$] gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul. 23: 179-182.   DOI   ScienceOn
17 Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. 2009. Leifsonia kribbensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 59: 18-21.   DOI   ScienceOn
18 Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul. 24: 7-11.   DOI   ScienceOn
19 Cassan F, Bottini R, Schneider G, Piccoli P. 2001. Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of $GA_{20}$ and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol. 125: 2053-2058.   DOI   ScienceOn
20 Cassan F, Lucangeli C, Bottini R, P Piccoli. 2001. Azospirillum spp. metabolize $[17,17-_2H^2]$ gibberellin A20 to [$[17,17-_2H^2]$gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol. 42: 763-767.   DOI   ScienceOn
21 Diene O, Narisawa K. 2009. The use of symbiotic fungal associations with crops in sustainable agriculture. J. Dev. Sustain. Agric. 4: 50-56.
22 Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, et al. 2001. slender rice, a constitutive giberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13: 999-1010.   DOI   ScienceOn
23 Janzen R, Rood S, Dormar J, McGill W. 1992. Azospirillum brasilense produces gibberellins in pure culture and chemicallydefined medium and in co-culture on straw. Soil Biol. Biochem. 24: 1061-1064.   DOI   ScienceOn
24 Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. 2007. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat. Rev. Microbiol. 5: 619-633.   DOI   ScienceOn
25 Joo GJ, K im YM, Lee IJ, Song K S, R hee IK. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26: 487-491.   DOI   ScienceOn
26 Kang SM, Khan AL, Hamayun H, Javid H, Joo GJ, Lee IJ. 2012. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J. Microbiol. 50: 902-909.   DOI
27 Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ. 2005. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43: 510-515.
28 Joo GJ, Kang SM, Hamayun M, Kim SK, Na CI, Shin DH, Lee IJ. 2009. Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J. Microbiol. 47: 167-171.   DOI
29 Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, et al. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31: 277-281.   DOI   ScienceOn
30 Lee IJ, Foster K, Morga PW. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011.   DOI   ScienceOn
31 Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556.   DOI   ScienceOn
32 Rodriguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339.   DOI   ScienceOn
33 Sambrook J, Russel DW. 2001. Molecular Cloning, A Laboratory Manual (3rd ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
34 Schulz B, Boyle C. 2005. The endophytic continuum. Mycol. Res. 109: 661-686.   DOI   ScienceOn
35 Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA. 2009. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol. Biochem. 41: 1768-1774.   DOI   ScienceOn
36 Sturz AV, Christie BR, Novak J. 2000. Bacterial endophytes: potential role in developing sustainable system of crop production. Crit. Rev. Plant Sci. 19: 1-30.   DOI   ScienceOn
37 ahin F, Cakmakci R, Kantar F. 2004. Sugar beet and barley yields in relation to inoculation with $N_{2}$-fixing and phosphate solubilizing bacteria. Plant Soil 265: 123-129.   DOI
38 Hedden P, Kamiya Y. 1997. Gibberellin biosynthesis: enzymes, genes, and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 431-460.   DOI   ScienceOn
39 Sturz AV, Nowak J. 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol. 15: 183-190.   DOI   ScienceOn
40 Zaidi S, Usmani S, Singh BR, Musarrat J. 2008. Significance of Bacillus subtilis strains SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997.