Browse > Article
http://dx.doi.org/10.4014/jmb.1407.07032

Cloning of the Transketolase Gene from Erythritol-Producing Yeast Candida magnoliae  

Yoo, Boung-Hyuk (Department of Food Science and Biotechnology, Kangwon National University)
Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University)
Seo, Jin-Ho (Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University)
Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.10, 2014 , pp. 1389-1396 More about this Journal
Abstract
The entire nucleotide sequence of the TKL1 gene encoding transketolase (TKL) in an erythritol-producing yeast of Candida magnoliae was determined by degenerate polymerase chain reaction and genome walking. Sequence analysis revealed an open reading frame of C. magnoliae TKL1 (CmTKL1) that spans 2,088 bp and encodes 696 amino acids, sharing 61.7% amino acid identity to Kluyveromyces lactis TKL. Functional analysis showed that CmTKL1 complemented a Saccharomyces cerevisiae tkl1 tkl2 double mutant for growth in the absence of aromatic amino acids and restored transketolase activity in this mutant. An enzyme activity assay and RT-PCR revealed that the expression of CmTKL1 is induced by fructose, $H_2O_2$, and KCl. The GenBank accession number for C. magnoliae TKL1 is KF751756.
Keywords
Candida magnoliae; transketolase; degenerate PCR; genome walking;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 You T, Stansfield I, Romano MC, Brown AJ, Coghill GM. 2011. Analysing GCN4 translational control in yeast by stochastic chemical kinetics modelling and simulation. BMC Syst. Biol. 5: 131.   DOI   ScienceOn
2 Roper H, Goossens J. 1993. Erythritol, a new raw material for food and non-food applications. Starke 45: 400-405.   DOI   ScienceOn
3 Park EH, Lee HY, Ryu YW, Seo JH, Kim MD. 2011. Role of osmotic and salt stress in the expression of erythrose reductase in Candida magnoliae. J. Microbiol. Biotechnol. 21: 1064-1068.   과학기술학회마을   DOI   ScienceOn
4 Park EH, Seo JH, Kim MD. 2012. Cloning and characterization of the orotidine-5'-phosphate decarboxylase gene (URA3) from the osmotolerant yeast Candida magnoliae. J. Microbiol. Biotechnol. 22: 642-648.   과학기술학회마을   DOI   ScienceOn
5 Park SY, Seo JH, Ryu YW. 2003. Two-stage fed-batch culture of Candida magnoliae for the production of erythritol using an industrial medium. Korean J. Biotechnol. Bioeng. 18: 249-254.   과학기술학회마을
6 Sambrook J, Russell DW. 2011. Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
7 Sawada K, Taki A, Yamakawa T, Seki M. 2009. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. J. Biosci. Bioeng. 108: 385-390.   DOI   ScienceOn
8 Schenk G, Duggleby RG, Nixon PF. 1998. Properties and functions of the thiamine diphosphate dependent enzyme transketolase. Int. J. Biochem. Cell Biol. 30: 1297-1318.   DOI   ScienceOn
9 Schenk G, Layfield R, Candy JM, Duggleby RG, Nixon PF. 1997. Molecular evolutionary analysis of the thiaminediphosphate- dependent enzyme, transketolase. J. Mol. Evol. 44: 552-572.   DOI
10 Sprenger GA. 1993. Nucleotide sequence of the Escherichia coli K-12 transketolase (tkt) gene. Biochim. Biophys. Acta 1216: 307-310.   DOI   ScienceOn
11 Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H. 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13: 4382-4389.
12 Sherman F. 2002. Getting started with yeast. Methods Enzymol. 350: 3-41.   DOI
13 Munro IC, Berndt WO, Borzelleca JF, Flamm G, Lynch BS, Kennepohl E, et al. 1998. Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem. Toxicol. 36: 1139-1174.   DOI   ScienceOn
14 Lee DH, Kim MD, Ryu YW, Seo JH. 2008. Cloning and characterization of CmGPD1, the Candida magnoliae homologue of glycerol-3-phosphate dehydrogenase. FEMS Yeast Res. 8: 1324-1333.   DOI   ScienceOn
15 Lee DH, Lee YJ, Ryu YW, Seo JH. 2010. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110. Microb. Cell Fact. 9:43.   DOI   ScienceOn
16 Mitschke L, Parthier C, Schroder-Tittmann K, Coy J, Ludtke S, Tittmann K. 2010. The crystal structure of human transketolase and new insights into its mode of action. J. Biol. Chem. 285: 31559-31570.   DOI   ScienceOn
17 Naula C, Alibu VP, Brock JM, Veitch NJ, Burchmore RJ, Barrett MP. 2008. A new erythrose 4-phosphate dehydrogenase coupled assay for transketolase. J. Biochem. Biophys. Methods 70: 1185-1187.   DOI   ScienceOn
18 Obiol-Pardo C, Rubio-Martinez J. 2009. Homology modeling of human transketolase: description of critical sites useful for drug d esign and study of the cofactor binding mode. J. Mol. Graph. Model. 27: 723-734.   DOI   ScienceOn
19 Onishi H. 1960. Studies on osmophilic yeasts. Bull. Agric. Chem. Soc. Jpn. 24: 131-140.   DOI
20 Choi JH, Kim MD, Seo JH, Ahn JW. 2003. Effects of fermentation conditions on production of erythritol by Candida magnoliae. Korean J. Food Sci. Technol. 35: 708-712.   과학기술학회마을
21 Di Segni G, Gastaldi S, Zamboni M, Tocchini-Valentini GP. 2011. Yeast pheromone receptor genes STE2 and STE3 are differently regulated at the transcription and polyadenylation level. Proc. Natl. Acad. Sci. USA 108: 17082-17086.   DOI   ScienceOn
22 Fullam E, Pojer F, Bergfors T, Jones TA, Cole ST. 2012. Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme. Open Biol. 2: 110026.   DOI
23 Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350: 87-96.   DOI
24 Goossens J, Roper H. 1994. Erythritol: a new sweetener. Food Sci. Tech. Today 8: 144-148.
25 Hajny GJ, Smith JH, Garver JC. 1964. Erythritol production by a yeast-like fungus. Appl. Microbiol. 12: 240-246.
26 Jacoby JJ, Heinisch JJ. 1997. Analysis of a transketolase gene from Kluyveromyces lactis reveals that the yeast enzymes are more related to transketolases of prokaryotic origins than to those of higher eukaryotes. Curr. Genet. 31: 15-21.   DOI
27 Ookura T, Azuma K, Isshiki K, Taniguchi H, Kasumi T, Kawamura Y. 2005. Primary structure analysis and functional expression of erythrose reductases from erythritol-producing fungi (Trichosporonoides megachiliensis SNG-42). Biosci. Biotechnol. Biochem. 69: 944-951.   DOI   ScienceOn
28 Otey F, Sloan J, Wilham C, Mehltretter C. 1961. Erythritol and ethylene glycol from dialdehyde starch. Ind. Eng. Chem. 53: 267-268.   DOI
29 Park EH, Lee DH, Seo JH, Kim MD. 2011. Cloning and character ization of a glyoxalase I gene from the osmotolerant yeast Candida magnoliae. J. Microbiol. Biotechnol. 21: 277-283.
30 Hope IA, Struhl K. 1985. GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell 43: 177-188.   DOI   ScienceOn
31 Huerou YL, Gunawardana I, Thomas AA, Boyd SA, Meese JD, Walter W, et al. 2008. Prodrug thiamine analogs as inhibitors of the enzyme transketolase. Bioorg. Med. Chem. Lett. 18: 505-508.   DOI   ScienceOn
32 Ishizuka H, Wako K, Kasumi T, Sasaki T. 1989. Breeding of a mutant of Aureobasidium sp. with high erythritol production. J. Ferment. Bioeng. 68: 310-314.   DOI
33 Joshi S, Singh AR, Kumar A, Misra PC, Siddiqi MI, Saxena JK. 2008. Molecular cloning and characterization of Plasmodium falciparum transketolase. Mol. Biochem. Parasitol. 160: 32-41.   DOI   ScienceOn
34 Sprenger GA, Schorken U, Sprenger G, Sahm H. 1995. Transketolase A of Escherichia coli K12 purification and properties of the enzyme from recombinant strains. Eur. J. Biochem. 230: 525-532.   DOI   ScienceOn
35 Sim H S, P ar k EH, Kwon S Y, C hoi SK, Lee SH, Kim MD. 2013. Cloning of the xylose reductase gene of Candida milleri. J. Microbiol. Biotechnol. 23: 984-992.   과학기술학회마을   DOI   ScienceOn
36 Soderberg T. 2005. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes. Archaea 1: 347-352.   DOI
37 Spencer JF, Gorin PA. 1960. The biosynthesis of erythritol and glycerol by Torulopsis magnoliae studies with $C^{14}$- labelled glucose. Can. J. Biochem. Physiol. 38: 157-164.   DOI
38 Sundstrom M, Lindqvist Y, Schneider G, Hellman U, Ronne H. 1993. Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids. J. Biol. Chem. 268: 24346-24352.
39 Tokuoka K, Ishizuka H, Wako K, Taniguchi H. 1992. Comparison of three forms of erythrose reductase from an Aureobasidium sp. mutant. J. Gen. Appl. Microbiol. 38: 145-155.   DOI
40 Veiga-Da-Cunha M, Firme P, Romao MV, Santos H. 1992. Application of $^{13}C$ nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Appl. Environ. Microbiol. 58: 2271-2279.
41 Yang SH, Han NS, Seo JH. 1999. Production of erythritol from glucose by an osmophilic mutant of Candida magnoliae. Biotechnol. Lett. 21: 887-890.   DOI   ScienceOn
42 Kochetov GA. 2001. Functional flexibility of the transketolase molecule. Biochemistry (Mosc.) 66: 1077-1085.   DOI
43 Kim KA, Noh BS, Lee JK, Kim SY, Park YC, Oh DK. 2000. Optimization of culture conditions for erythritol production by Torula sp. J. Microbiol. Biotechnol. 10: 69-74.
44 Kim SY, Park SS, Seo JH. 1 996. Analysis of fermentation characteristics for production of erythritol by Candida sp. Korean J. Food Sci. Technol. 28: 935-939.   과학기술학회마을
45 Kochetov GA. 1982. Determination of transketolase activity via ferricyanide reduction. Methods Enzymol. 89: 43-44.   DOI
46 Koh ES, Lee TH, Lee DY, Kim HJ, Ryu YW, Seo JH. 2003. Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol. Lett. 25: 2103-2105.   DOI   ScienceOn
47 Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, et al. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657-662.   DOI   ScienceOn
48 Boneau CA. 1960. The effects of violations of assumptions underlying the t-test. Psychol. Bull. 57: 49-64.   DOI   ScienceOn
49 Braus GH. 1991. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol. Rev. 55: 349-370.
50 Hinnebusch AG, Natarajan K. 2002. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell 1: 22-32.   DOI