1 |
Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, et al. 2013. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6: 217-224.
DOI
ScienceOn
|
2 |
Gillett NP, Matthews HD. 2010. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ. Res. Lett. 5: 034011.
DOI
ScienceOn
|
3 |
Breznak JA, Kane MD. 1990. Microbial acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 7: 309-313.
DOI
|
4 |
Call D, Logan BE. 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42: 3401-3406.
DOI
ScienceOn
|
5 |
Cheng S, Xing D, Call DF, Logan BE. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 3953-3958.
|
6 |
Desloover J, Arends JB, Hennebel T, Rabaey K. 2012. Operational and technical considerations for microbial electrosynthesis. Biochem. Soc. Trans. 40: 1233-1238.
DOI
ScienceOn
|
7 |
Huang L, Chai X, Chen G, Logan BE. 2011. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ. Sci. Technol. 45: 5025-5031.
DOI
ScienceOn
|
8 |
Islam S, Suidan MT. 1998. Electrolytic denitrification: long term performance and effect of current intensity. Water Res. 32: 528-536.
DOI
ScienceOn
|
9 |
Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. 2013. Bioelectrochemical systems for simultaneous production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydr. Energy 38: 3497-3502.
DOI
ScienceOn
|
10 |
Liang P, Fan M, Cao X, Huang X. 2009. Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells. J. Chem. Technol. Biotechnol. 84: 794-799.
DOI
ScienceOn
|
11 |
Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, et al. 2010. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. USA 107: 13087-13092.
DOI
ScienceOn
|
12 |
Kim MS, Cha J, Kim DH. 2012. Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens. J. Microbiol. Biotechnol. 22: 1395-1400.
DOI
ScienceOn
|
13 |
Li H, O pgenorth P H, W ernick D G, R ogers S, W u T Y, Higashide W, et al. 2012. Integrated electromicrobial conversion of to higher alcohols. Science 335: 1596-1596.
DOI
ScienceOn
|
14 |
Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, et al. 2012. Worldwide innovations in the development of carbon capture technologies and the utilization of . Energy Environ. Sci. 5: 7281-7305.
DOI
ScienceOn
|
15 |
Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. 2012. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78: 8412-8420.
DOI
|
16 |
Moss AR, Jouany JP, Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49: 231-253
DOI
ScienceOn
|
17 |
Muller V. 2003. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69: 6345-6353.
DOI
|
18 |
Piao J. 2013. Power density enhancement of anion-exchange membrane-installed microbial fuel cell under bicarbonatebuffered cathode condition. J. Microbiol. Biotechnol. 23: 36-39.
DOI
ScienceOn
|
19 |
Muyzer G, Dewaal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s ribosomal RNA. Appl. Environ. Microbiol. 59: 695-700.
|
20 |
Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, et al. 2011. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77: 2882-2886.
DOI
ScienceOn
|
21 |
Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. 2010. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1: e00103-00110.
|
22 |
Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, et al. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1: 9-18.
DOI
ScienceOn
|
23 |
Rabaey K, Rozendal RA. 2010. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nature Rev. Microbiol. 8: 706-716.
DOI
ScienceOn
|
24 |
Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN. 2011. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy Environ. Sci. 4: 216.
DOI
ScienceOn
|
25 |
Su W, Zhang L, Li D, Zhan G, Qian J, Tao Y. 2012. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol. Bioeng. 109: 2904-2910.
DOI
ScienceOn
|
26 |
Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. 2010. Bioelectrochemical reduction of to via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101: 3085-3090.
DOI
ScienceOn
|
27 |
Su W, Zhang L, Tao Y, Zhan G, Li D, Li D. 2012. Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems. Electrochem. Commun. 22: 37-40.
DOI
ScienceOn
|
28 |
Ter Heijne A, Strik DPBTB, Hamelers HVM, Buisman CJN. 2010. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. Environ. Sci. Technol. 44: 7151-7156.
DOI
ScienceOn
|
29 |
Tugtas AE, Pavlostathis SG. 2007. Effect of sulfide on nitrate reduction in mixed methanogenic cultures. Biotechnol. Bioeng. 97: 1448-1459.
DOI
ScienceOn
|
30 |
Wallace W, Ward T, Breen A, Attaway H. 1996. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J. Ind. Microbiol. 16: 68-72.
DOI
|