Browse > Article
http://dx.doi.org/10.4014/jmb.1304.04039

Production of Acetate from Carbon Dioxide in Bioelectrochemical Systems Based on Autotrophic Mixed Culture  

Su, Min (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences)
Jiang, Yong (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences)
Li, Daping (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.8, 2013 , pp. 1140-1146 More about this Journal
Abstract
Bioelectrochemical systems (BESs) have been suggested as a new technology for wastewater treatment while accomplishing energy and chemical generation. This study describes the performance of BESs based on mixed culture that are capable of reducing carbon dioxide to acetate. The cathode potential was a critical factor that affected the performance of the BESs. The rate of acetate production increased as the electrode potential became more negative, from 0.38 mM $d^{-1}$ (-900 mV vs. Ag/AgCl) to 2.35 mM $d^{-1}$ (-1,100 mV), while the electron recovery efficiency of carbon dioxide reduction to acetate increased from 53.6% to 89.5%. The microbial population was dominated by relatives of Acetobacterium woodii when a methanogenic inhibitor was added to the BESs initially.
Keywords
Bioelectrochemical systems; carbon dioxide; acetate; biocathode;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, et al. 2013. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6: 217-224.   DOI   ScienceOn
2 Gillett NP, Matthews HD. 2010. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ. Res. Lett. 5: 034011.   DOI   ScienceOn
3 Breznak JA, Kane MD. 1990. Microbial $H_2/CO_2$ acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 7: 309-313.   DOI
4 Call D, Logan BE. 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42: 3401-3406.   DOI   ScienceOn
5 Cheng S, Xing D, Call DF, Logan BE. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 3953-3958.
6 Desloover J, Arends JB, Hennebel T, Rabaey K. 2012. Operational and technical considerations for microbial electrosynthesis. Biochem. Soc. Trans. 40: 1233-1238.   DOI   ScienceOn
7 Huang L, Chai X, Chen G, Logan BE. 2011. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ. Sci. Technol. 45: 5025-5031.   DOI   ScienceOn
8 Islam S, Suidan MT. 1998. Electrolytic denitrification: long term performance and effect of current intensity. Water Res. 32: 528-536.   DOI   ScienceOn
9 Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. 2013. Bioelectrochemical systems for simultaneous production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydr. Energy 38: 3497-3502.   DOI   ScienceOn
10 Liang P, Fan M, Cao X, Huang X. 2009. Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells. J. Chem. Technol. Biotechnol. 84: 794-799.   DOI   ScienceOn
11 Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, et al. 2010. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. USA 107: 13087-13092.   DOI   ScienceOn
12 Kim MS, Cha J, Kim DH. 2012. Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens. J. Microbiol. Biotechnol. 22: 1395-1400.   DOI   ScienceOn
13 Li H, O pgenorth P H, W ernick D G, R ogers S, W u T Y, Higashide W, et al. 2012. Integrated electromicrobial conversion of $CO_2$ to higher alcohols. Science 335: 1596-1596.   DOI   ScienceOn
14 Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, et al. 2012. Worldwide innovations in the development of carbon capture technologies and the utilization of $CO_2$. Energy Environ. Sci. 5: 7281-7305.   DOI   ScienceOn
15 Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. 2012. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78: 8412-8420.   DOI
16 Moss AR, Jouany JP, Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49: 231-253   DOI   ScienceOn
17 Muller V. 2003. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69: 6345-6353.   DOI
18 Piao J. 2013. Power density enhancement of anion-exchange membrane-installed microbial fuel cell under bicarbonatebuffered cathode condition. J. Microbiol. Biotechnol. 23: 36-39.   DOI   ScienceOn
19 Muyzer G, Dewaal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s ribosomal RNA. Appl. Environ. Microbiol. 59: 695-700.
20 Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, et al. 2011. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77: 2882-2886.   DOI   ScienceOn
21 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. 2010. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1: e00103-00110.
22 Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, et al. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1: 9-18.   DOI   ScienceOn
23 Rabaey K, Rozendal RA. 2010. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nature Rev. Microbiol. 8: 706-716.   DOI   ScienceOn
24 Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN. 2011. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy Environ. Sci. 4: 216.   DOI   ScienceOn
25 Su W, Zhang L, Li D, Zhan G, Qian J, Tao Y. 2012. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol. Bioeng. 109: 2904-2910.   DOI   ScienceOn
26 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. 2010. Bioelectrochemical reduction of $CO_2$ to $CH_4$ via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101: 3085-3090.   DOI   ScienceOn
27 Su W, Zhang L, Tao Y, Zhan G, Li D, Li D. 2012. Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems. Electrochem. Commun. 22: 37-40.   DOI   ScienceOn
28 Ter Heijne A, Strik DPBTB, Hamelers HVM, Buisman CJN. 2010. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. Environ. Sci. Technol. 44: 7151-7156.   DOI   ScienceOn
29 Tugtas AE, Pavlostathis SG. 2007. Effect of sulfide on nitrate reduction in mixed methanogenic cultures. Biotechnol. Bioeng. 97: 1448-1459.   DOI   ScienceOn
30 Wallace W, Ward T, Breen A, Attaway H. 1996. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J. Ind. Microbiol. 16: 68-72.   DOI