Browse > Article
http://dx.doi.org/10.4014/jmb.1301.01075

Purification and Characterization of an Alkaliphilic Alginate Lyase AlgMytC from Saccharophagus sp. Myt-1  

Sakatoku, Akihiro (Graduate School of Science and Engineering, University of Toyama)
Tanaka, Daisuke (Graduate School of Science and Engineering, University of Toyama)
Nakamura, Shogo (Graduate School of Science and Engineering, University of Toyama)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.6, 2013 , pp. 872-877 More about this Journal
Abstract
In a previous study, we isolated and reported a second species of the Saccharophagus genus, Saccharophagus sp. strain Myt-1. In the present study, an alginate lyase gene (algMytC) from the genomic DNA of Myt-1 was cloned and characterized. The DNA sequence fragment obtained contained an open reading frame of 1,032 bp that encoded a protein of 343 amino acids with an estimated molecular mass of 37.6 kDa and a pI of 6.60. The deduced protein, AlgMytC, had the conserved amino acid sequences (RTELREM, QIH, YFKAGVYNQ) of the polysaccharide lyase family 7. A BLAST homology search indicated that AlgMytC shared an amino acid sequence identity of 95.9% with alg7A of S. degradans 2-40. The cloned and purified AlgMytC protein showed optimal activity at $40^{\circ}C$, and retained more than 90% of its total activity even after treatment at $25^{\circ}C$ for 24 h. AlgMytC was very alkaliphilic with an optimal pH of 9.0, and more than 90% of its activity was retained in the pH range 8.5-10.0. Moreover, AlgMytC was stable over a wide pH range. The activity of AlgMytC was also stable in the presence of various detergents.
Keywords
Alginate lyase; alkaliphilic; pH stable; Saccharophagus sp. Myt-1; thermostable;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Andrykovitch, G. and I. Marx. 1988. Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl. Environ. Microbiol. 54: 1061-1062.
2 Akiyama, H., T. Endo, R. Nakakita, K. Murata, Y. Yonemoto, and K. Okayama. 1992. Effect of depolymerized alginates on the growth of bifidobacteria. Biosci. Biotechnol. Biochem. 56: 355-356.   DOI   ScienceOn
3 An, Q. D., G. L. Zhang, H. T. Wu, Z. C. Zhang, G. S. Zheng, L. Luan, et al. 2009. Alginate-deriving oligosaccharide production by alginase from newly isolated Flavobacterium sp. LXA and its potential application in protection against pathogens. J. Appl. Microbiol. 106: 161-170.   DOI   ScienceOn
4 Calumpong, H. P., A. P. Maypa, and M. Magbanua. 1999. Population and alginate yield and quality assessment of four Sargassum species in Negros Island, central Philippines Hydrobiologia 398/399: 211-215.   DOI   ScienceOn
5 Ekborg, N. A., J. M. Gonzalez, M. B. Howard, L. E. Taylor, S. W. Hutcheson, and R. M. Weiner. 2005. Saccharophagus degradans gen. nov., sp. nov., a versatile marine decomposer of complex polysaccharides. Int. J. Syst. Evol. Microbiol. 55: 1545-1549.   DOI   ScienceOn
6 Evans, L. R. and A. Linker. 1973. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J. Bacteriol. 116: 915-924.
7 Gorin, P. A. J. and J. F. T. Spencer. 1966. Exocellular alginic acid from Azotobacter vinelandii. Can. J. Chem. 44: 993-998.   DOI
8 Gacesa, P. 1988 Alginates. Carbohydr. Polym. 8: 161-182.   DOI   ScienceOn
9 Ghose, T. K. 1987 Measurement of cellulase activity. Pure Appl. Chem. 59: 257-268.   DOI
10 González, J. M. and R. M. Weiner. 2000. Phylogenetic characterization of marine bacterium strain 2-40, a decomposer of complex polysaccharides. Int. J. Syst. Evol. Microbiol. 50: 831-834.   DOI
11 Haug, A., B. Larsen, and O. Smidsrød. 1966. A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem. Scand. 20: 183-190.   DOI
12 Horikoshi, K. and T. Akiba. 1982. Alkalophilic Microorganisms. Japan Scientific Societies Press, Tokyo.
13 Huang, L., J. Zhou, X. Li, Q. Peng, H. Lu, and Y. Du. 2013. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J. Ind. Microbiol. Biotechnol. 40: 113-122.   DOI   ScienceOn
14 Iwamoto, Y., X. Xu, T. Tamura, T. Oda, and T. Muramatsu. 2003. Enzymatically depolymerized alginate oligomers that cause cytotoxic cytokine production in human mononuclear cells. Biosci. Biotechnol. Biochem. 67: 258-263.   DOI   ScienceOn
15 Iwamoto, M., M. Kurachi, T. Nakashima, D. Kim, K. Yamaguchi, T. Oda, et al. 2005. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett. 579: 4423-4429.   DOI   ScienceOn
16 Iwasaki, K. and Y. Matsubara. 2000. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci. Biotechnol. Biochem. 64: 1067-1070.   DOI   ScienceOn
17 Kim, H. T., H. J. Ko, N. Kim, D. Kim, D. Lee, I. G. Choi, et al. 2012. Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol. Lett. 34: 1087-1092.   DOI   ScienceOn
18 Kim, H. S., C. G. Lee, and E. Y. Lee. 2011. Alginate lyase: Structure, property, and application. Biotechnol. Bioprocess Eng. 16: 843-851.   DOI   ScienceOn
19 Kim, H. T., S. Lee, D. Lee, H. S. Kim, W. G. Bang, K. H. Kim, and I. G. Choi. 2010. Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: An exo-type beta-agarase producing neoagarobiose. Appl. Microbiol. Biotechnol. 86: 227-234.   DOI   ScienceOn
20 Kim, H. T., J. H. Chung, D. Wang, J. Lee, H. C. Woo, I. G. Choi, and K. H. Kim. 2012. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl. Microbiol. Biotechnol. 93: 2233-2239.   DOI
21 Ko, J. K., M. W. Jung, K. H. Kim, and I. G. Choi 2009. Optimal production of a novel endo-acting beta-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21(DE3). N. Biotechnol. 26: 157-164.   DOI   ScienceOn
22 Suda, K., Y. Tanji, K. Hori, and H. Unno. 1999. Evidence for a novel Chlorella virus-encoded alginate lyase. FEMS Microbiol. Lett. 180: 45-53.   DOI
23 Kobayashi, T., K. Uchimura, M. Miyazaki, Y. Nogi, and K. Horikoshi. 2009. A new high-alkaline alginate lyase from a deep-sea bacterium Agarivorans sp. Extremophiles 13: 121-129.   DOI   ScienceOn
24 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
25 Li, J. W., S. Dong, J. Song, C. B. Li, X. L. Chen, B. B. Xie, and Y. Z. Zhang. 2011. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524. Mar. Drugs 9: 109-123.   DOI   ScienceOn
26 Park, H. H., N. Kam, E. Y. Lee, and H. S. Kim. 2012. Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3. Mar. Biotechnol. 14: 189-202.   DOI
27 Peciña, A. and A. Paneque. 1994. Detection of alginate lyase by activity staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent renaturation. Anal. Biochem. 15: 124-127.
28 Sakatoku, A., M. Wakabayashi, Y. Tanaka, D. Tanaka, and S. Nakamura. 2012. Isolation of a novel Saccharophagus species (Myt-1) capable of degrading a variety of seaweeds and polysaccharides. MicrobiologyOpen 1: 2-12.   DOI   ScienceOn
29 Tanaka, D., S. Yoneda, Y. Yamashiro, A. Sakatoku, T. Kayashima, K. Yamakawa, and S. Nakamura. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl. Biochem. Biotechnol. 168: 327-338.   DOI   ScienceOn
30 Uchimura, K., M. Miyazaki, Y. Nogi, T. Kobayashi, and K. Horikoshi. 2010. Cloning and sequencing of alginate lyase genes from deep-sea strains of Vibrio and Agarivorans and characterization of a new Vibrio enzyme. Mar. Biotechnol. 12: 526-533.   DOI   ScienceOn
31 Wargacki, A. J., E. Leonard, M. N. Win, D. D. Regitsky, C. N. Santos, P. B. Kim, et al. 2012. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335: 308-313.   DOI   ScienceOn
32 Weiner, R. M., L. E. Taylor 2nd, B. Henrissat, L. Hauser, M. Land, P. M. Coutinho, et al. 2008. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T. PLoS Genet. 4: e1000087.   DOI   ScienceOn
33 Watson, B. J., H. Zhang, A. G. Longmire, Y. H. Moon, and S. W. Hutcheson. 2009. Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J. Bacteriol. 191: 5697-5705.   DOI   ScienceOn