Browse > Article
http://dx.doi.org/10.4014/jmb.1209.09066

Ethanol Production by Repeated Batch and Continuous Fermentations by Saccharomyces cerevisiae Immobilized in a Fibrous Bed Bioreactor  

Chen, Yong (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Liu, Qingguo (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Zhou, Tao (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Li, Bingbing (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Yao, Shiwei (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Li, An (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Wu, Jinglan (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Ying, Hanjie (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 511-517 More about this Journal
Abstract
In this work, a fibrous bed bioreactor with high specific surface area and good adsorption efficacy for S. cerevisiae cells was used as the immobilization matrix in the production of ethanol. In batch fermentation, an optimal ethanol concentration of 91.36 g/l and productivity of 4.57 g $l^{-1}\;h^{-1}$ were obtained at an initial sugar concentration of 200 g/l. The ethanol productivity achieved by the immobilized cells was 41.93% higher than that obtained from free cells. Ethanol production in a 22-cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in packed-bed reactors, a maximum ethanol concentration of 108.14 g/l and a productivity of 14.71 g $l^{-1}\;h^{-1}$ were attained at $35^{\circ}C$, and a dilution rate of 0.136 $h^{-1}$ with 250 g/l glucose.
Keywords
Immobilization; ethanol fermentation; fibrous bed bioreactor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bai, F. W., W. A. Anderson, and M. Moo-Young. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26: 89-105.   DOI   ScienceOn
2 Hamelinck, C. N., G.. V. Hooijdonk, and A. P. C. Faaij. 2005. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle-, and long-term. Biomass Bioenerg. 28: 384-410.   DOI   ScienceOn
3 Kilonzo, P., A. Margaritis, and M. A. Bergougnou. 2009. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. J. Biotechnol. 143: 60-68.   DOI   ScienceOn
4 Huang, W. C., D. E. Ramey, and S. T. Yang. 2004. Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous-bed bioreactor. Appl. Biochem. Biotechnol. 115: 113-116.
5 Kannan, T. R., G.. Sangiliyandi, and P. Gunasekaran. 1998. Improved ethanol production from sucrose by a mutant of Zymomonas mobilis lacking sucrases in immobilized cell fermentation. Enzyme Microb. Technol. 22: 179-184.   DOI   ScienceOn
6 Kar, S., M. R. Swain, and R. C. Ray. 2008. Statistical optimization of alpha-amylase production with immobilized cells of Streptomyces erumpens MTCC 7317 in Luffa cylindrica L. sponge discs. Appl. Biochem. Biotechnol. 152: 177-188.
7 Kilonzo, P., A. Margaritis, and M. A. Bergougnou. 2010. Repeated-batch production of glucoamylase using recombinant Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor. J. Ind. Microbiol. Biotechnol. 37: 773-783.   DOI
8 Krisch, J. and B. Szajani. 1997. Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti. Biotechnol. Lett. 19: 525-528.   DOI   ScienceOn
9 Laopaiboon, L. and P. Laopaiboon. 2012. Ethanol production from sweet sorghum juice in repeated-batch fermentation by Saccharomyces cerevisiae immobilized on corncob. World J. Microbiol. Biotechnol. 28: 559-566.   DOI   ScienceOn
10 Laopaiboon, L., S. Nuanpeng, P. Srinophakun, P. Klanrit, and P. Laopaiboon. 2009. Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresour. Technol. 100: 4176-4182.   DOI   ScienceOn
11 Qureshi, N., B. A. Annous, T. C. Ezeji, P. Karcher, and I. S. Maddox. 2005. Biofilm reactors for industrial bioconversion processes: Employing potential of enhanced reaction rates. Microb. Cell Fact. 4: 24.   DOI   ScienceOn
12 Najafpour, G. D. 2006. Immobilization of microbial cells for the production of organic acid and ethanol. Biochem. Eng. Biotechnol. 8: 199-227.
13 Nigam, J. N. 2000. Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. J. Biotechnol. 80: 189-193.   DOI   ScienceOn
14 Pacheco, A. M., D. R. Gondim, and L. R. B. Goncalves. 2010. Ethanol production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Appl. Biochem. Biotechnol. 161: 209-217.   DOI   ScienceOn
15 Rattanapan, A., S. Limtong, and M. Phisalaphong. 2011. Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons. Appl. Energy 88: 4400-4404.   DOI   ScienceOn
16 Rittmann, S., A. Seifert, and C. Herwig. 2012. Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on $ H_2 $ and $ CO_2 $. Biomass Bioenerg. 36: 293-301.   DOI   ScienceOn
17 Ryu, D. D. Y., Y. J. Kim, and J. H. Kim. 1984. Effect of air supplement on the performance of continuous ethanol fermentation system. Biotechnol. Bioeng. 26: 12-16.   DOI   ScienceOn
18 Swain, M. R., S. Kar, A. K. Sahoo, and R. C. Ray. 2007. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiol. Res. 162: 93-98.   DOI   ScienceOn
19 Tay, A. and S. T. Yang. 2002. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol. Bioeng. 80: 1-12.   DOI   ScienceOn
20 Xu, Z. N. and S. T. Yang. 2007. Production of mycophenolic acid by Penicillium brevicompactum immobilized in a rotating fibrous-bed bioreactor. Enzyme Microb. 40: 623-628.   DOI   ScienceOn
21 Thomas, K. C. and W. M. Ingledew. 1990. Fuel alcohol production: Effects of free amino nitrogen on fermentation of very-high-gravity wheat mash. Appl. Environ. Microbiol. 56: 2046-2050.
22 Thomas, K. C., S. H. Hynes, and W. M. Ingledew. 1996. Practical and theoretical considerations in the production of high concentration of alcohol by fermentation. Process Biochem. 31: 321-331.   DOI   ScienceOn
23 Watanabe, I., N. Miyata, A. Ando, R. Shiroma, K. Tokuyasu, and T. Nakamura. 2012. Ethanol production by repeated-batch simultaneous saccharication and fermentation (SSF) of alkalitreated rice straw using immobilized Saccharomyces cerevisiae cells. Bioresour. Technol. 123: 695-698.   DOI   ScienceOn
24 Yu, J. L., X. Zhang, and T. W. Tan. 2007. A novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129: 415-420.   DOI   ScienceOn
25 Zhu, Y. and S. T. Yang. 2003. Adaptation of Clostridium tyrobutyricum for enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Biotechnol. Prog. 19: 365-372.   DOI   ScienceOn
26 Adinarayana, K., B. Jyothi, and P. Ellaiah. 2005. Production of alkaline protease with immobilized cells of Bacillus subtilis PE- 11 in various matrices by entrapment technique. AAPS Pharm. Sci. Tech. 6: 391-397.   DOI   ScienceOn
27 Amenaghawon, N. A., C. O. Okieimen, and S. E. Ogbeide. 2012. Kinetic modelling of ethanol inhibition during alcohol fermentation of corn stover using Saccharomyces cerevisiae. Int. J. Eng. Res. Appl. 4: 798-803.
28 Amutha, R. and P. Gunasekaran. 2001. Production of ethanol from liquefied cassava using co-immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. J. Biosci. Bioeng. 92: 560-564.   DOI   ScienceOn
29 Ariyajaroenwong, P., P. Laopaiboon, P. Jaisil, and L. Laopaiboon. 2012. Repeated-batch ethanol production from sweet sorghum juice by Saccharomyces cerevisiae immobilized on sweet sorghum stalks. Energies 5: 1215-1228.   DOI
30 Bai, F. W., L. J. Chen, Z. Zhang, W. A. Anderson, and M. Moo-Young. 2004. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J. Biotechnol. 110: 287-293.   DOI   ScienceOn
31 Chandel, A. K., M. L. Narasu, G. Chandrasekhar, A. Manikyam, and L. V. Rao. 2009. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour. Technol. 100: 2404-2410.   DOI   ScienceOn
32 Chen, J., H. Chen, X. Zhu, Y. Lu, S. T. Yang, Z. Xu, and P. Cen. 2009. Long-term production of soluble human Fas ligand through immobilization of Dictyosteliu discoideum in a fibrous bed bioreactor. Appl. Microbiol. Biotechnol. 82: 241-248.   DOI
33 Demirci, A., A. L. Pometto, and K. L. G. Ho. 1997. Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J. Ind. Microbiol. Biotechnol. 19: 299-304.   DOI
34 Diderich, J. A., M. Schepper, P. van Hoek, M. A. H. Luttik, J. P van Dijken, J. T. Pronk, et al. 1999. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J. Biol. Chem. 274: 15350-15359.   DOI