Browse > Article
http://dx.doi.org/10.4014/jmb.1210.10057

Functions of Monocyte Chemotactic Protein-3 in Transgenic Mice Fed a High-Fat, High-Cholesterol Diet  

An, So Jung (School of Life Sciences and Biotechnology, Kyungpook National University)
Jung, Un Ju (Department of Nutrition and Food Science, Kyungpook National University)
Choi, Myung-Sook (Department of Nutrition and Food Science, Kyungpook National University)
Chae, Chan Kyu (School of Life Sciences and Biotechnology, Kyungpook National University)
Oh, Goo Taek (Division of Life and Pharmaceutical Sciences, Ewha Woman's University)
Park, Yong Bok (School of Life Sciences and Biotechnology, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.3, 2013 , pp. 405-413 More about this Journal
Abstract
Monocyte chemotactic protein-3 (MCP-3), a chemokine that is in a superfamily of structurally related small chemotactic cytokines involved in leukocyte trafficking, is regarded as a key factor in atherogenesis. In this study, we examined the changes in atherogenic parameters including hepatic lipid accumulation and oxidative balance in MCP- 3-overexpressing transgenic mice (MCP-3 mice) under atherogenic conditions. To induce an extreme atherogenic condition, mice were fed a high-fat, high-cholesterol (HFHC) diet for 12 weeks. The body weight and food intake were not changed by MCP-3 overexpression in the aorta. On a HFHC diet, the MCP-3 mice had higher plasma levels of total cholesterol and a higher atherogenic index compared with wild-type mice, although there were no differences in the plasma HDL-cholesterol and triglyceride levels. Furthermore, an increase in lipid accumulation was observed in the aortas as well as the livers of the HFHC diet-fed MCP-3 mice compared with wild-type mice. The activities of antioxidant enzymes increased in the livers of the HFHC diet-fed MCP-3 mice, whereas supplementation with antioxidants, naringin and hesperidin, reversed the activities of the hepatic antioxidant enzymes in HFHC diet-fed MCP-3 mice, indicating that there might be more oxidative damage to the tissues in the HFHC diet-fed MCP-3 mice leading to progression towards atherosclerosis and hepatic steatosis. Microarray analyses of the aorta revealed atherosclerosis-, PPARs-, lipoprotein receptor, and apolipoprotein-related genes that were affected by the HFHC diet in MCP-3 mice. These findings suggest that aortic MCP-3 overexpression may contribute to the development of atherosclerosis and hepatic steatosis under atherogenic conditions.
Keywords
Monocyte chemotactic protein-3 (MCP-3); atherogenesis; transgenic mice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gupte, A. A., J. Z. Liu, Y. Ren, L. J. Minze, J. R. Wiles, A. R. Collins, et al. 2010. Rosiglitazone attenuates age- and dietassociated nonalcoholic steatohepatitis in male low-density lipoprotein receptor knockout mice. Hepatology 52: 2001-2011.   DOI   ScienceOn
2 Samson, S., L. Mundkur, and V. V. Kakkar. 2012. Immune response to lipoproteins in atherosclerosis. Cholesterol. DOI:10.1155/2012/571846.
3 Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470.   DOI   ScienceOn
4 Tsou, C. L., W. Peters, Y. Si, S. Slaymaker, A. M. Aslanian, S. P. Weisberg, et al. 2007. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117: 902-909.   DOI   ScienceOn
5 Shankar, K., A. Harrell, P. Kang, R. Singhal, M. J. Ronis, and T. M. Badger. 2010. Carbohydrate-responsive gene expression in the adipose tissue of rats. Endocrinology 151: 153-164.   DOI   ScienceOn
6 Teodoro, B. G., A. J. Natali, S. A. Fernandes, L. A. Silva, R. A. Pinho, S. L. Matta, and M. D. Peluzio. 2012. Improvements of atherosclerosis and hepatic oxidative stress are independent of exercise intensity in LDLr(-/-) mice. J. Atheroscler. Thromb. 19: 904-911.   DOI
7 Tous, M., N. Ferre, J. Camps, F. Riu, and J. Joven. 2005. Feeding apolipoprotein E-knockout mice with cholesterol and fat enriched diets may be a model of non-alcoholic steatohepatitis. Mol. Cell. Biochem. 268: 53-58.   DOI
8 Warnick, J. B., J. Benderson, and J. J. Albers. 1982. HDL precipitation by dextran sulfate-$MgCl_{2}$ method. Clin. Chem. 28: 1397-1382.
9 Weber, C., A. Zernecke, and P. Libby. 2008. The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models. Nat. Rev. Immunol. 8: 802-815.   DOI   ScienceOn
10 Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed. 2002. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30: e15.   DOI   ScienceOn
11 Zhang, S., X. Wang, L. Zhang, X. Yang, J. Pan, and G. Ren. 2011. Characterization of monocyte chemoattractant proteins and CC chemokine receptor 2 expression during atherogenesis in apolipoprotein E-null mice. J. Atheroscler. Thromb. 18: 846-856.   DOI   ScienceOn
12 Kim, H. J., G. T. Oh, Y. B. Park, M. K. Lee, H. J. Seo, and M. S. Choi. 2004. Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life Sci. 74: 1621-1634.   DOI   ScienceOn
13 Hamilton, T. A., J. A. Major, and G. M. Chisolm. 1995. The effects of oxidized low density lipoproteins on inducible mouse macrophage gene expression are gene and stimulus dependent. J. Clin. Invest. 95: 2020-2027.   DOI   ScienceOn
14 Ishigaki, Y., H. Katagiri, J. Gao, T. Yamada, J. Imai, K. Uno, et al. 2008. Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis. Circulation 118: 75-83.   DOI   ScienceOn
15 Jang, M. K., J. Y. Kim, N. H. Jeoung, M. A. Kang, M. S. Choi, and Y. B. Park. 2004. Oxidized low-density lipoproteins may induce expression of monocyte chemotactic protein-3 in atherosclerotic plaques. Biochem. Biophys. Res. Commun. 323:898-905.   DOI   ScienceOn
16 Nagy, L., P. Tontonoz, J. G. A. Alvarez, H. Chen, and R. M. Evans. 1998. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR. Cell 93: 229-240.   DOI   ScienceOn
17 Lichtman, A. H., S. K. Clinton, K. Iiyama, P. W. Connelly, P. Libby, and M. I. Cybulsky. 1999. Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semi-purified diets with and without cholate. Arterioscler. Thromb. Vasc. Biol. 19: 1938-1944.   DOI   ScienceOn
18 Nelken, N. A., S. R. Coughlin, D. Gordon, and J. N. Wilcox. 1991. Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest. 88: 1121-1127.   DOI
19 Malden, L. T., A. Chait, E. W. Raines, and R. Ross. 1991. The influence of oxidatively modified low density lipoproteins on expression of platelet-derived growth factor by human monocytederived macrophages. J. Biol. Chem. 266: 13901-13907.
20 Murdoch, C. and A. Finn. 2000. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95: 3032-3043.
21 Parks, E. J. and E. J. Parks. 2002. Changes in fat synthesis influenced by dietary macronutrient content. Proc. Nutr. Soc.61: 281-286.   DOI   ScienceOn
22 Ricote, M., J. Huang, and L. Fajas. 1998. Expression of the peroxisome proliferator-activated receptor $\gamma$ (PPAR$\gamma$) in human atherosclerosis and regulation in macrophage by colony stimulating factor and oxidized low-density lipoprotein. Proc. Natl. Acad. Sci. USA 95: 7614-7619   DOI   ScienceOn
23 Bhatia, L. S., N. P. Curzen, P. C. Calder, and C. D. Byrne.2012. Non-alcoholic fatty liver disease: A new and important cardiovascular risk factor? Eur. Heart J. 33: 1190-2000.   DOI
24 Charo, I. F. and M. B. Taubman. 2004. Chemokines in the pathogenesis of vascular disease. Circ. Res. 95: 858-866.   DOI   ScienceOn
25 Brea, A., D. Mosquera, E. Martín, A. Arizti, J. L. Cordero, and E. Ros. 2005. Nonalcoholic fatty liver disease is associated with carotid atherosclerosis: A case-control study. Arterioscler. Thromb. Vasc. Biol. 25: 1045-1050.   DOI   ScienceOn
26 Bucolo, G. and H. David. 1973. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 19:476-482.
27 Carallo, C., G. Mancuso, G. Mauro, F. Laghi, B. Madafferi, C. Irace, et al. 2009. Hepatic steatosis, carotid atherosclerosis and metabolic syndrome: The STEATO Study. J. Gastroenterol. 44: 1156-1161.   DOI
28 Aiello, R. J., P.-A. K. Bourassa, S. Lindsey, W. Weng, E. Natoli, B. J. Rollins, and P. M. Milos. 1999. Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 19: 1518-1525.   DOI   ScienceOn
29 Chee, M., R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, et al. 1996. Accessing genetic information with highdensity DNA arrays. Science 274: 610-614.   DOI   ScienceOn
30 Decorde, K., E. Ventura, D. Lacan, J. Ramos, J. P. Cristol, and J. M. Rouanet. 2010. An SOD rich melon extract Extramel prevents aortic lipids and liver steatosis in diet-induced model of atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 20: 301-307.   DOI   ScienceOn
31 Allain, C. C., L. S. Poon, C. S. G. Chan, W. Richmond, and P. C. Fu. 1974. Enzymatic determination of total serum cholesterol. Clin. Chem. 20: 470-475.
32 Gosling, J., S. Slaymaker, L. Gu, S. Tseng, C. H. Zlot, S. G. Young, et al. 1999. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 103: 773-778.   DOI   ScienceOn
33 Erdely, A., D. Kepka-Lenhart, R. Salmen-Muniz, R. Chapman, T. Hulderman, M. Kashon, et al. 2010. Arginase activities and global arginine bioavailability in wild-type and ApoE-deficient mice: Responses to high fat and high cholesterol diets. PLoS One 5: e15253.   DOI   ScienceOn
34 Fong, L. G., T. A. Fong, and A. D. Cooper. 1991. Inhibition of lipopolysaccharide-induced interleukin-1 beta mRNA expression in mouse macrophages by oxidized low density lipoprotein. J. Lipid Res. 32: 1899-1910.
35 Getz, G. S. and C. A. Reardon. 2006. Diet and murine atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26: 242-249.
36 Gu, L., Y. Okada, S. K. Clinton, C. Gerard, G. K. Sukhova, P. Libby, and B. J. Rollins. 1998. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2: 275-281.   DOI   ScienceOn