Browse > Article
http://dx.doi.org/10.4014/jmb.1212.12014

Expression and Purification of Human Farnesoid X Receptor-Ligand Binding Domain as Soluble Form Using a Dual Cistronic Expression Vector  

Kang, Hyun (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
Ye, Micheal B. (Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University)
Bahk, Young Yil (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.3, 2013 , pp. 322-328 More about this Journal
Abstract
In this study, we show the expression and purification of the human recombinant farnesoid X receptor (FXR)- ligand binding domain (LBD) protein in E. coli using a double cistronic vector, pACYCDuet-1, as a soluble form. We describe here the expression and characterization of a biologically active $FXR-LBD_{(248-476)}$. When expressed in the influence of bacterial promoters ($P_{T7}$ and $P_{Tac}$) of the single cistronic expression vectors, the human recombinant $FXR-LBD_{(248-476)}$ was found to be totally insoluble. However, by using a double cistronic expression vector, we were able to obtain the human recombinant $FXR-LBD_{(248-476)}$ in a soluble form. To allow for biological activities, we have subcloned into the pACYCDuet-1 vector, expressed in E. coli cells at some optimized conditions, and purified and characterized the human recombinant active $FXR-LBD_{(248-476)}$ proteins using the fluorescence polarization assay. This suggests that the expression of FXR-LBD in a double cistronic vector improves its solubility and probably assists its correct folding for the biologically active form of the proteins. We suggest that this may represent a new approach to high expression of other nuclear receptors and may be useful as well for other classes of heterodimeric protein partners.
Keywords
Nuclear receptor; recombinant FXR-LBD; dual expression vector; E. coli expression system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Makishima, M., A. Y. Okamoto, J. J. Repa, H. Tu, R. M. Leaned, A. Luk, et al. 1999. Identification of a nuclear receptor for bile acids. Science 284: 1362-1365.   DOI   ScienceOn
2 Wurtz, J. M., W. Bourguet, J. P. Renaud, V. Vivat, P. Chambon, D. Moras, and H. Gronemeyer. 1996. A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Mol. Biol. 3: 87-94.   DOI   ScienceOn
3 Li, C., J. W. Schwabe, E. Banayo, and R. M. Evans. 1997. Coexpression of nuclear receptor partners increases their solubility and biological activities. Proc. Natl. Acad. Sci. USA 94: 2278-2283.   DOI   ScienceOn
4 Lu, T. T., M. Makishima, J. J. Repa, K. Schoonjans, T. A. Kerr, J. Auwerx, and D. J. Mangelsdorf. 2000. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6: 507-515.   DOI   ScienceOn
5 Mangelsdorf, D. J. and R. M. Evans. 1995. The RXR heterodimers and orphan receptor. Cell 83: 841-850.   DOI   ScienceOn
6 Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrich, G. Schultz, K. Umesono, et al. 1995. The nuclear receptor superfamily: The second decade. Cell 83: 835-839.   DOI   ScienceOn
7 McKenna, N. J., R. B. Lanz, and B. W. O'Malley. 1999. Nuclear receptor coregulators: Cellular and molecular biology. Endocrinol. Rev. 20: 321-344.
8 Nagy, L. and J. W. R. Schwabe. 2004. Mechanism of the nuclear receptor molecular switch. Trends Biochem. Sci. 29: 317-324.   DOI   ScienceOn
9 Neuschwander-Tetri, B. A. 2012. Farnesoid X receptor agonists: What they are and how they might be used in treating liver disease. Curr. Gastroenterol. Rep. 14: 55-62.   DOI   ScienceOn
10 Saïda, F., M. Uzan, B. Odaert, and F. Bontems. 2006. Expression of highly toxic genes in E. coli: Special strategies and genetic tools. Curr. Protein Pept. Sci. 7: 47-56.   DOI   ScienceOn
11 Ogawa, S., J. Lozach, C. Benner, G. Pascual, R. K. Tangirala, S. Westin, et al. 2005. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122: 707-721.   DOI   ScienceOn
12 Overington, J. P. and B. Al-Lazikani. 2006. How many drug targets are there? Nat. Rev. Drug Discov. 5: 993-996.   DOI   ScienceOn
13 Parks, D. J., S. G. Blanchard, R. K. Bledsoe, G. Chandra, T. G. Consler, S. A. Kliewer, et al. 1999. Bile acids: Natural ligands for orphan nuclear receptor. Science 284: 1365-1358.   DOI   ScienceOn
14 Seol, W., H. S. Choi, and D. D. Moore. 1995. Isolation of proteins that interact specifically with the retinoid X receptor: Two novel orphan receptors. Mol. Endocrinol. 9: 72-85.
15 Sørensen, H. P. and K. K. Mortensen. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115: 113-128.   DOI   ScienceOn
16 Teodoro, J. S., A. P. Rolo, and C. M. Plameira. 2011. Hepatic FXR: Key regulator of whole-body energy metabolism. Trends Endocrinol. Metab. 22: 458-466.   DOI   ScienceOn
17 Thomas, A. M., S. N. Hart, B. Kong, J. Fang, X. B. Zhong, and G. L. Guo. 2010. Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology 51: 1410-1419.   DOI   ScienceOn
18 Vavassori, P., A. Mencarelli, B. Renga, E. Distrutti, and S. Fiorucci. 2009. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183: 6251-6261.   DOI   ScienceOn
19 Dagher, R., C. Pigault, D. Bonnet, D. Boeglin, C. Pourbaix, M. C. Kilhoffer, et al. 2006. Use of a fluorescence polarization based high throughput assay to identify new calmodulin ligands. Biochim. Biophys. Acta 1763: 1250-1255.   DOI   ScienceOn
20 Altucci, L., M. D. Leibowitz, K. M. Ogilvie, A. R. de Leva, and H. Gronemeyer. 2007. RXR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov. 6: 793-810.   DOI   ScienceOn
21 Aranda, A. and A. Pascual. 2001. Nuclear hormone receptors and gene expression. Physiol. Rev. 81: 1269-1304.
22 Bourguet, W., M. Ruff, P. Chambon, H. Gronemeyer, and D. Moras. 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-$\alpha$. Nature 375: 377-382.   DOI   ScienceOn
23 Fuchs, M. 2012. Non-alcoholic fatty liver disease: The bile acid-activated farnesoid X receptor as an emerging treatment target. J. Lipids DOI:10.1155/2012/934396.
24 Lafebvre, P., B. Cariou, F. Lien, F. Kuipers, and B. Staels. 2009. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89: 147.   DOI   ScienceOn
25 Gadaleta, R. M., K. J. van Erpecum, B. Oldenburg, E. C. Willemsen, W. Renooij, S. Murzilli, et al. 2011. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60: 463-472.   DOI   ScienceOn
26 Hollman, D. A. A., A. Miloan, K. J. van Erpecum, and S. W. van Mil. 2012. Anti-inflammatory and metabolic actions of FXR: Insights into molecular mechanism. Biochem. Biophys. Acta 1821: 1443-1452.
27 Jonker, J. W., C. Liddle, and M. Downes. 2012. FXR and PXR: Potential therapeutic targets in cholestasis. J. Steroid Biochem. Mol. Biol. 130: 147-158.   DOI   ScienceOn
28 Laffitte, B. A., H. R. Kast, C. M. Nguyen, A. M. Zavacki, D. D. Moore, and P. A. Edwards. 2000. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J. Biol. Chem. 275: 10638-10647.   DOI   ScienceOn
29 Lee, K. C. and W. L. Kraus. 2001. Nuclear receptors, coactivators and chromatin: New approaches, new insights. Trends Endocrinol. Metab. 12: 191-197.   DOI   ScienceOn
30 Levy-Bimbot, M., G. Major, D. Courilleau, J. P. Blondeau, and Y. Levi. 2012. Tetrabromobisphenol-A disrupts thyroid hormone receptor A function in vitro: Use of fluorescence polarization to assay corepressor and coactivator peptide binding. Chemosphere 87: 782-788.   DOI   ScienceOn