Browse > Article
http://dx.doi.org/10.4014/jmb.1301.01027

Biomedical Application of Phosphoproteomics in Neurodegenerative Diseases  

Bahk, Young Yil (Department of Biotechnology, Konkuk University)
Mohamed, Bari (Department of Applied Biochemistry, Konkuk University)
Kim, Young Jun (Department of Applied Biochemistry, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.3, 2013 , pp. 279-288 More about this Journal
Abstract
Phosphorylation and dephosphorylation of proteins trigger many critical events involved in cellular response, such as regulation of enzymatic activity, protein conformational change, protein-protein interaction, and cellular localization. Any malfunction of protein phosphorylation leads to a diseased state such as diabetes, cancer, and even neurodegenerative diseases. In order to comprehend the molecular view of the complex biological processes of these diseases in depth, very sensitive and detailed analytical methods are necessary for identification of the phosphorylated residues in a protein. As part of these efforts, phosphoproteomics has been developed and applied for the elucidation of neurodegenerative diseases. In this review, we present a brief summary of phosphoproteomics approaches that are now routinely used in biomedical research, and describe the biomedical application of phosphoproteomics especially in Alzheimer's and other neurodegenerative diseases.
Keywords
Phosphoproteomics; neurodegenerative disease; phosphorylation; mass spectrometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bucciantini, M., G. Calloni, F. Chiti, L. Formigli, D. Nosi, C. M. Dobson, and M. Stefani. 2004. Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J. Biol. Chem. 279: 31374-31382.   DOI   ScienceOn
2 Buxbaum, J. N. 2003. Diseases of protein conformation: What do in vitro experiments tell us about in vivo diseases? Trends Biochem. Sci. 28: 585-592.   DOI   ScienceOn
3 Cantin, G. T., T. R. Shock, S. K. Park, H. D. Madhani, and J. R. Yates 3rd. 2007. Optimizing$TiO_2$-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Anal. Chem. 79: 4666- 4673.   DOI   ScienceOn
4 Choe, L., M. D'Ascenzo, N. R. Relkin, D. Pappin, P. Ross, B. Williamson, et al. 2007. 8-Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. Proteomics 7: 3651-3660.   DOI   ScienceOn
5 Cohen, F. E. and J. W. Kelly. 2003. Therapeutic approaches to protein-misfolding diseases. Nature 426: 905-909.   DOI   ScienceOn
6 Chong, P. K., C. S. Gan, T. K. Pham, and P. C. Wright. 2006. Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: Implication of multiple injections. J. Proteome Res. 5: 1232-1240.   DOI   ScienceOn
7 Chong, P. K., H. Lee, J. W. Kong, M. C. Loh, C. H. Wong, and Y. P. Lim. 2008. Phosphoproteomics, oncogenic signaling and cancer research. Proteomics 8: 4370-4382.   DOI   ScienceOn
8 Choudhary, C. and M. Mann. 2010. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11: 427-439.   DOI   ScienceOn
9 Cohen, P. 2000. The regulation of protein function by multisite phosphorylation - a 25 year update. Trends Biochem. Sci. 25: 596-601.   DOI   ScienceOn
10 Cohen, P. 2002. The origins of protein phosphorylation. Nat. Cell Biol. 4: E127-E130.   DOI   ScienceOn
11 Dawson, T. M. and V. L. Dawson. 2003. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302: 819-822.   DOI   ScienceOn
12 De Meyts, P. and J. Whittaker. 2002. Structural biology of insulin and IGF1 receptors: Implications for drug design. Nat. Rev. Drug Discov. 1: 769-783.   DOI   ScienceOn
13 Di Domenico, F., R. Sultana, E. Barone, M. Perluigi, C. Cini, C. Mancuso, et al. 2011. Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects. J. Proteomics 74: 1091-1103.   DOI   ScienceOn
14 Gannon, J., L. Staunton, K. O'Connell, P. Doran, and K. Ohlendieck. 2008. Phosphoproteomic analysis of aged skeletal muscle. Int. J. Mol. Med. 22: 33-42.
15 DiFiglia, M., E. Sapp, K. O. Chase, S. W. Davies, G. P. Bates, J. P. Vonsattel, and N. Aronin. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990-1993.   DOI
16 Dobson, C. M. 2003. Protein folding and misfolding. Nature 426: 884-890.   DOI   ScienceOn
17 Figeys, D., S. P. Gygi, G. McKinnon, and R. Aebersold. 1998. An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal. Chem. 70: 3728-3734.   DOI   ScienceOn
18 Gerber, S. A., J. Rush, O. Stemman, M. W. Kirschner, and S. P. Gygi. 2003. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100: 6940-6945.   DOI   ScienceOn
19 Goedert, M. 2004. Tau protein and neurodegeneration. Semin. Cell Dev. Biol. 15: 45-49.   DOI   ScienceOn
20 Goedert, M. 1993. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 16: 460-465.   DOI   ScienceOn
21 Gruhler, A., J. V. Olsen, S. Mohammed, P. Mortensen, N. J. Faergeman, M. Mann, and O. N. Jensen. 2005. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell Proteomics 4: 310-327.   DOI   ScienceOn
22 Guo, A., J. Villen, J. Kornhauser, K. A. Lee, M. P. Stokes, K. Rikova, et al. 2008. Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl. Acad. Sci. USA 105: 692-697.   DOI   ScienceOn
23 Jensen, O. N. 2004. Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 8: 33-41.   DOI   ScienceOn
24 Gygi, S. P., B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17: 994-999.   DOI   ScienceOn
25 Hunter, T. 2000. Signaling - 2000 and beyond. Cell 100: 113-127.   DOI   ScienceOn
26 Ingram, E. M. and M. G. Spillantini. 2002. Tau gene mutations: Dissecting the pathogenesis of FTDP-17. Trends Mol. Med. 8: 555-562.   DOI   ScienceOn
27 Jensen, O. N. 2006. Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 7: 391-403.   DOI   ScienceOn
28 Jensen, S. S. and M. R. Larsen. 2007. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun. Mass Spectrom. 21: 3635-3645.   DOI   ScienceOn
29 Kirkpatrick, D. S., S. A. Gerber, and S. P. Gygi. 2005. The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods 35: 265-273.   DOI   ScienceOn
30 Kosako, H. and K. Nagano. 2011. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev. Proteomics 8: 81-94.   DOI   ScienceOn
31 Kweon, H. K. and K. Hakansson. 2006. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem. 78: 1743-1749.   DOI   ScienceOn
32 Mann, M. and O. N. Jensen. 2003. Proteomic analysis of posttranslational modifications. Nat. Biotechnol. 21: 255-261.   DOI   ScienceOn
33 Lam, M. P., S. O. Siu, E. Lau, X. Mao, H. Z. Sun, P. C. Chiu, et al. 2010. Online coupling of reverse-phase and hydrophilic interaction liquid chromatography for protein and glycoprotein characterization. Anal. Bioanal. Chem. 398: 791-804.   DOI
34 Larsen, M. R., T. E. Thingholm, O. N. Jensen, P. Roepstorff, and T. J. Jorgensen. 2005. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell Proteomics 4: 873-886.   DOI   ScienceOn
35 Lopez, E., I. Lopez, A. Ferreira, and J. Sequi. 2011. Clinical and technical phosphoproteomic research. Proteome Sci. 9: 27.   DOI
36 Mann, M., S. E. Ong, M. Gronborg, H. Steen, O. N. Jensen, and A. Pandey. 2002. Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends Biotechnol. 20: 261-268.   DOI   ScienceOn
37 Manning, G., D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam. 2002. The protein kinase complement of the human genome. Science 298: 1912-1934.   DOI   ScienceOn
38 Mattson, M. P. 2004. Pathways towards and away from Alzheimer's disease. Nature 430: 631-639.   DOI   ScienceOn
39 Mazanek, M., G. Mituloviae, F. Herzog, C. Stingl, J. R. Hutchins, J. M. Peters, and K. Mechtler. 2007. Titanium dioxide as a chemoaffinity solid phase in offline phosphopeptide chromatography prior to HPLC-MS/MS analysis. Nat. Protoc. 2: 1059-1069.   DOI   ScienceOn
40 McNulty, D. E. and R. S. Annan. 2008. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell Proteomics 7: 971-980.   DOI   ScienceOn
41 Motoyama, A., T. Xu, C. I. Ruse, J. A. Wohlschlegel, and J. R. Yates 3rd. 2007. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal. Chem. 79: 3623-3634.   DOI   ScienceOn
42 Moorhead, G. B., L. Trinkle-Mulcahy, and A. Ulke-Lemee. 2007. Emerging roles of nuclear protein phosphatases. Nat. Rev. Mol. Cell Biol. 8: 234-244.   DOI   ScienceOn
43 Morales, M. A., R. Watanabe, C. Laurent, P. Lenormand, J. C. Rousselle, A. Namane, and G. F. Spath. 2008. Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 8: 350-363.   DOI   ScienceOn
44 Moser, K. and F. M. White. 2006. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J. Proteome Res. 5: 98-104.   DOI   ScienceOn
45 Mumby, M. and D. Brekken. 2005. Phosphoproteomics: New insights into cellular signaling. Genome Biol. 6: 230.   DOI
46 Neville, D. C., C. R. Rozanas, E. M. Price, D. B. Gruis, A. S. Verkman, and R. R. Townsend. 1997. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci. 6: 2436-2445.
47 Oka, T., K. Tagawa, H. Ito, and H. Okazawa. 2011. Dynamic changes of the phosphoproteome in postmortem mouse brains. PLoS One 6: e21405.   DOI
48 Olsen, J. V. and M. Mann. 2004. Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. Proc. Natl. Acad. Sci. USA 101: 13417-13422.   DOI   ScienceOn
49 Ong, S. E., B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen, A. Pandey, and M. Mann. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1: 376-386.   DOI   ScienceOn
50 Ashman, K. and E. L. Villar. 2009. Phosphoproteomics and cancer research. Clin. Transl. Oncol. 11: 356-362.   DOI
51 Alpert, A. J. 1990. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. 499: 177-196.   DOI   ScienceOn
52 Alpert, A. J. and P. C. Andrews. 1988. Cation-exchange chromatography of peptides on poly(2-sulfoethyl aspartamide)- silica. J. Chromatogr. 443: 85-96.   DOI   ScienceOn
53 Andersson, L. and J. Porath. 1986. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 154: 250-254.   DOI   ScienceOn
54 Barr, J. R., V. L. Maggio, D. G. Patterson Jr., G. R. Cooper, L. O. Henderson, W. E. Turner, et al. 1996. Isotope dilution-mass spectrometric quantification of specific proteins: Model application with apolipoprotein A-I. Clin. Chem. 42: 1676-1682.
55 Peng, J., J. E. Elias, C. C. Thoreen, L. J. Licklider, and S. P. Gygi. 2003. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: The yeast proteome. J. Proteome Res. 2: 43-50.   DOI   ScienceOn
56 Piggee, C. 2009. Phosphoproteomics: Miles to go before it's routine. Anal. Chem. 81: 2418-2420.   DOI   ScienceOn
57 Ong, S. E. and M. Mann. 2006. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1: 2650-2660.
58 Ozlu, N., B. Akten, W. Timm, N. Haseley, H. Steen, and J. A. Steen. 2010. Phosphoproteomics. Wiley Interdiscip Rev. Syst. Biol. Med. 2: 255-276.   DOI   ScienceOn
59 Pinkse, M. W., P. M. Uitto, M. J. Hilhorst, B. Ooms, and A. J. Heck. 2004. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLCESI- MS/MS and titanium oxide precolumns. Anal. Chem. 76: 3935-3943.   DOI   ScienceOn
60 Posewitz, M. C. and P. Tempst. 1999. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 71: 2883-2892.   DOI   ScienceOn
61 Ross, C. A. and M. A. Poirier. 2004. Protein aggregation and neurodegenerative disease. Nat. Med. 10 (Suppl): S10-S17.   DOI   ScienceOn
62 Ross, C. A. and M. A. Poirier. 2005. Opinion: What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol. 6: 891-898.   DOI   ScienceOn
63 Ross, P. L., Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker, S. Hattan, et al. 2004. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3: 1154-1169.   DOI   ScienceOn
64 Schmelzle, K. and F. M. White. 2006. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr. Opin. Biotechnol. 17: 406-414.   DOI   ScienceOn
65 Blume-Jensen, P. and T. Hunter. 2001. Oncogenic kinase signalling. Nature 411: 355-365.   DOI   ScienceOn
66 Bates, G. 2003. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 361: 1642-1644.   DOI   ScienceOn
67 Bossy-Wetzel, E., R. Schwarzenbacher, and S. A. Lipton. 2004. Molecular pathways to neurodegeneration. Nat. Med. 10 (Suppl): S2-S9.   DOI   ScienceOn
68 Beausoleil, S. A., J. Villen, S. A. Gerber, J. Rush, and S. P. Gygi. 2006. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24: 1285-1292.   DOI   ScienceOn
69 Boersema, P. J., S. Mohammed, and A. J. Heck. 2008. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Anal. Bioanal. Chem. 391: 151-159.   DOI
70 Rudrabhatla, P., P. Grant, H. Jaffe, M. J. Strong, and H. C. Pant. 2010. Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ. FASEB J. 24: 4396-4407.   DOI   ScienceOn
71 Rush, J., A. Moritz, K. A. Lee, A. Guo, V. L. Goss, E. J. Spek, et al. 2005. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23: 94-101.   DOI   ScienceOn
72 Salih, E. 2005. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Mass Spectrom. Rev. 24: 828-846.   DOI   ScienceOn
73 Schreiber, T. B., N. Mausbacher, S. B. Breitkopf, K. Grundner- Culemann, and H. Daub. 2008. Quantitative phosphoproteomics - an emerging key technology in signal-transduction research. Proteomics 8: 4416-4432.   DOI   ScienceOn
74 Schulze, W. X. and M. Mann. 2004. A novel proteomic screen for peptide-protein interactions. J. Biol. Chem. 279: 10756-10764.
75 Selkoe, D. J. 2004. Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases. Nat. Cell Biol. 6: 1054-1061.   DOI   ScienceOn
76 Shastry, B. S. 2003. Neurodegenerative disorders of protein aggregation. Neurochem. Int. 43: 1-7.   DOI   ScienceOn
77 Smith, J. C. and D. Figeys. 2008. Recent developments in mass spectrometry-based quantitative phosphoproteomics. Biochem. Cell Biol. 86: 137-148.   DOI   ScienceOn
78 Spillantini, M. G. and M. Goedert. 1998. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21: 428-433.   DOI   ScienceOn
79 Thingholm, T. E., O. N. Jensen, P. J. Robinson, and M. R. Larsen. 2008. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol. Cell Proteomics 7: 661-671.
80 Steen, H., B. Kuster, M. Fernandez, A. Pandey, and M. Mann. 2002. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277: 1031-1039.   DOI   ScienceOn
81 Tolnay, M. and A. Probst. 1999. Tau protein pathology in Alzheimer's disease and related disorders [Review]. Neuropathol. Appl. Neurobiol. 25: 171-187.   DOI
82 Stefani, M. and C. M. Dobson. 2003. Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. (Berl.) 81: 678-699.   DOI   ScienceOn
83 Thingholm, T. E., O. N. Jensen, and M. R. Larsen. 2009. Analytical strategies for phosphoproteomics. Proteomics 9: 1451- 1468.   DOI   ScienceOn
84 Thingholm, T. E., T. J. Jorgensen, O. N. Jensen, and M. R. Larsen. 2006. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. 1: 1929-1935.   DOI   ScienceOn
85 Villen, J. and S. P. Gygi. 2008. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3: 1630-1638.   DOI   ScienceOn
86 Yang, X. J. 2005. Multisite protein modification and intramolecular signaling. Oncogene 24: 1653-1662.   DOI   ScienceOn
87 Zhou, H., R. Tian, M. Ye, S. Xu, S. Feng, C. Pan, et al. 2007. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis 28: 2201-2215.   DOI   ScienceOn