Browse > Article
http://dx.doi.org/10.4014/jmb.1204.04021

Microbial Consortia in Oman Oil Fields: A Possible Use in Enhanced Oil Recovery  

Al-Bahry, Saif N. (College of Science, Biology Department, Sultan Qaboos University)
Elsahfie, Abdulkader E. (College of Science, Biology Department, Sultan Qaboos University)
Al-Wahaibi, Yahya M. (College of Engineering, Petroleum and Chemical Engineering Department, Sultan Qaboos University)
Al-Bimani, Ali S. (College of Engineering, Petroleum and Chemical Engineering Department, Sultan Qaboos University)
Joshi, Sanket J. (College of Science, Biology Department, Sultan Qaboos University)
Al-Maaini, Ratiba A. (College of Science, Biology Department, Sultan Qaboos University)
Al-Alawai, Wafa J. (College of Science, Biology Department, Sultan Qaboos University)
Sugai, Yuichi (Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University)
Al-Mandhari, Mussalam (Petroleum Development of Oman)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.1, 2013 , pp. 106-117 More about this Journal
Abstract
Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.
Keywords
Microbial enhanced oil recovery; microbial consortia; culture-dependent and culture-independent techniques; Oman; denaturing gradient gel electrophoresis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alain, K. P., M. Pignet, M. Zbinden, F. Quillevere, J. P. Duchiron, F. Donval, et al. 2002. Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int. J. Syst. Evol. Microbiol. 52: 1621-1628.   DOI   ScienceOn
2 Aminin, A. L. N., F. M. Warganegara, P. Aditiawati, and Akhmaloka. 2008. Culture-independent and culture-dependent approaches on microbial community analysis at Gedongsongo (GS-2) hot spring. Int. J. Integ. Biol. 2: 145-152.
3 Arahal, D. R., M. Teresa Garcia, W. Ludwig, K. H. Schleiferand, and A. Ventosa. 2001. Transfer of Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int. J. Syst. Evol. Microbiol. 51: 1443-1448.
4 Blasco, R., M. Martinez-Luque, M. P. Madrid, F. Castillo, and C. Moreno-Vivian. 2001. Rhodococcus sp. RB1 grows in the presence of high nitrate and nitrite concentrations and assimilates nitrate in moderately saline environments. Arch. Microbiol. 175: 435-440.   DOI
5 Azadapour, A. 1992. Isolation, characterization and metabolism of microorganisms indigenous to subterranean oil bearing formation. Mississippi State University.
6 Banat, I. M. 1993. The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol. Lett. 15: 591-594.   DOI
7 Bhupathiraju, V. K., M. J. McInerney, and R. M. Knapp. 1993. Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11: 19-34.   DOI   ScienceOn
8 Brogne, S., D. Paniagua, and R. Vazquez-Duhalt. 2008. Biodegradation of organic pollutants by halophilic bacteria and archaea. J. Mol. Microbiol. Biotechnol. 15: 74-92.   DOI   ScienceOn
9 Dahle, H., F. Garshol, M. Madsen, and N. K. Birkeland. 2008. Microbial community structure analysis of produced water from a high-temperature North Sea oil field. Antonie van Leeuwenhoek 93: 37-49.   DOI
10 Eden, B., P. Laycock, and M. Fielder. 1993. Oilfield Reservoir Souring. Health and Safety Executive.
11 Gevertz, D., J. R. Paterek, M. E. Davey, and W. A. Wood. 1991. Isolation and characterization of anaerobic halophilic bacteria from oil reservoir brines. Dev. Petrol. Sci. Ser. 31: 115-129.   DOI
12 Haridon, S. L., M. L. Miroshnichenko, H. Hippe, M. L. Fardeau, E. A. Bonch-Osmolovskaya, E. Stackebrandt, and C. Jeanthon. 2002. Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int. J. Syst. Evol. Microbiol. 52: 1715-1722.   DOI   ScienceOn
13 Klouche, N., M. L. Fardeau, J. F. Lascourreges, J. L. Cayol, H. Hacene, P. Thomas, and M. Magot. 2007. Geosporobacter subterraneus gen. nov., a spore-forming bacterium isolated from a deep subsurface aquifer. Int. J. Syst. Evol. Microbiol. 57: 1757-1761.   DOI   ScienceOn
14 Helmke, E. and H. Weyland. 1984. Rhodococcus marinonascens sp. nov. an Actinomycete from the sea. Int. J. Syst. Bacteriol. 34: 127-138.   DOI
15 Heylen, K., B. Vanaparys, L. Wittebolle, W. Verstraete, N. Boon, and P. D. Vos. 2006. Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study. Appl. Environ. Microbiol. 72: 2637-2643.   DOI   ScienceOn
16 Jeanthon, C., A. L. Reysenbach, S. L'Haridon, A. Gambacorta, N. R. Pace, P. Glenat, and D. Prieur. 1995. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164: 91-97.   DOI
17 Li, H., S. Z. Yang, B. Z. Mu, Z. F. Rong, and J. Zhang. 2006. Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol. Lett. 257: 92-98.   DOI   ScienceOn
18 Lien, T., M. Madsen, F. A. Rainey, and N. K. Birkeland. 1998. Petrotoga mobilis sp.nov., from a North Sea oil production well. Int. J. Syst. Bacteriol. 48: 1007-1013.   DOI
19 Liu, Y. J., Y. P. Chen, P. K. Jin, and X. C. Wang. 2009. Bacterial communities in a crude oil gathering and transferring system (China). Ecol. Environ. Microbiol. 1: 5.
20 Magot, M., B. Olliver, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77: 103-116.   DOI   ScienceOn
21 Nazina, T. M., D. S. Sokolova, A. A. Grigoryan, N. M. Shestakova, E. M. Mikhailova, A. B. Poltaraus, et al. 2005. Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Syst. Appl. Microbiol. 28: 43-53.   DOI   ScienceOn
22 Maneerat, S. and K. Phetrong. 2007. Isolation of biosurfactantproducing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J. Sci. Technol. 29: 781-791.
23 McInerney, M. J., M. P. Baryant, R. B. Hespell, and J. W. Costerton. 1981. Syntrophomonas wolfeigen novo. sp. novo., anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41: 1029-1039.
24 Miranda-Tello, E., M. L. Fardeau, J. Sepulveda, L. Fernandez, J. L. Cayol, P. Thomas, and B. Oillivier. 2004. Graciella nitratireducens gen. nov., sp. nov., anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from an oil field separator in the Gulf of Mexico. Int. J. Syst. Evol. Microbiol. 53: 1509-1514.
25 Oliveira, V. M., L. D. Sette, K. C. M. Simioni, and E. V. S. Neto. 2008. Bacterial diversity characterization in petroleum samples from Brazillian reservoirs. Braz. J. Microbiol. 39: 445-452   DOI   ScienceOn
26 Ollivier, B. and J. L. Cayol. 2005. Fermentative, iron-reducing and nitrate-reducing microorganisms, 71-88. In B. Ollivier, and M. Magot (eds.). Petroleum Microbiology. ASM Press, Washington, USA.
27 Orphan, V. J., S. K. Goffredi, E. F. Delong, and J. R. Boles. 2003. Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiol. J. 20: 295-311   DOI   ScienceOn
28 Sepahy, A. A., M. M. Assadi, V. Saggadian, and A. Noohi. 2005. Production of biosurfactant from Iranian oil fields by isolated bacilli. Int. J. Environ. Sci. Technol. 1: 287-293.   DOI   ScienceOn
29 Ravot, G., M. Magot, M. L. Fardeau, B. K. C. Patel, G. Prensier, A. Egan, et al. 1995. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil producing well. Int. J. Syst. Bacteriol. 45: 308-314.   DOI
30 Orphan, V. J., L. T. Taylor, D. Hafenbradl, and E. F. Delong. 2000. Culture dependent and culture independent characterization of microbial assemblages associated with high temperature petroleum reservoirs. Appl. Environ. Microbiol. 66: 700-711.   DOI   ScienceOn
31 Satyanarayana, T., C. Raghukumar, and S. Shivaji. 2005. Extremophilic microbes: Diversity and perspectives. Curr. Sci. 89: 78-90.
32 Spark, I., I. Patey, B. Duncan, A. Hamilton, C. Devine, and C. Mcgovern-Traa. 2000. The effects of indigenous and introduced microbes on deeply buried hydrocarbon reservoirs, North Sea. Clay Minerals 35: 5-12.   DOI   ScienceOn
33 Vreeland, R. H., C. D. Litchfield, E. L. Martin, and E. Elliot. 1980. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Soc. Gen. Microbiol. 30: 485-495
34 Wang, J., T. Ma, L. Zhao, J. Lv, G. Li, F. Liang, and R. Liu. 2008. PCR-DGGE method for analyzing the bacterial community in a high temperature petroleum reservoir. World J. Microbiol. Biotechnol. 24: 1981-1987.   DOI
35 Yamane, K., H. Maki, T. Nakayama, T. Nakajima, N. Nomura, H. Uchiyama, and M. Kitaoka. 2008. Diversity and similarity of microbial communities in petroleum crude oils produced in Asia. Biosci. Biotechnol. Biochem. 72: 2831-2839.   DOI   ScienceOn
36 Yoshida, N., K. Yagi, D. Sato, N. Watanabe, T. Kuroishi, K. Nishimoto, et al. 2005. Bacterial communities in petroleum oil in stockpiles. J. Biosci. Bioeng. 99: 143-149.
37 Youssef, N. H., K. E. Duncan, D. P. Nagle, K. N. Savage, R. M. Knapp, and M. J. McInerney. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56: 339-347.   DOI   ScienceOn