Browse > Article
http://dx.doi.org/10.4014/jmb.1308.08068

Transcriptomic Analysis of Genes Modulated by Cyclo($\small{L}$-Phenylalanine-$\small{L}$-Proline) in Vibrio vulnificus  

Kim, In Hwang (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Son, Jee-Soo (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Wen, Yancheng (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Jeong, Sang-Min (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Min, Ga-Young (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Park, Na-Young (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Lee, Keun-Woo (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Cho, Yong-Joon (Chunlab, Inc., Seoul National University)
Chun, Jongsik (Chunlab, Inc., Seoul National University)
Kim, Kun-Soo (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.12, 2013 , pp. 1791-1801 More about this Journal
Abstract
Diketopiperazine is produced by various organisms, including bacteria, fungi, and animals, and has been suggested as a novel signal molecule involved in the modulation of genes with various biological functions. Vibrio vulnificus, which causes septicemia in humans, produces cyclo($\small{L}$-phenylalanine-$\small{L}$-proline) (cFP). To understand the biological roles of cFP, the effect of the compound on the expression of the total mRNA in V. vulnificus was assessed by next-generation sequencing. Based on the transcriptomic analysis, we classified the cFP-regulated genes into functional categories and clustered them according to the expression patterns resulted from treatment with cFP. From a total of 4,673 genes, excepting the genes encoding tRNA in V. vulnificus, 356 genes were up-regulated and 602 genes were down-regulated with an RPKM (reads per kilobase per million) value above 3. The genes most highly induced by cFP comprised those associated with the transport and metabolism of inorganic molecules, particularly iron. The genes negatively regulated by cFP included those associated with energy production and conversion, as well as carbohydrate metabolism. Noticeably, numerous genes related with biofilm formation were modulated by cFP. We demonstrated that cFP interferes significantly with the biofilm formation of V. vulnificus.
Keywords
Vibrio vulnificus; cyclo(Phe-Pro); next-generation sequencing; transcriptome; biofilm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gualdi L, Tagliabue L, Landini P. 2007. Biofilm formationgene expression relay system in Escherichia coli: modulation of sigmaS-dependent gene expression by the CsgD regulatory protein via sigmaS protein stabilization. J. Bacteriol. 189: 8034-8043.   DOI   ScienceOn
2 Holden MT, Chhabra SR, de Nys R, Stead P, Bainton NJ, Hill PJ, et al. 1999. Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol. Microbiol. 33: 1254-1266.
3 Hu M, Zhang C, Mu Y, Shen Q, Feng Y. 2010. Indole affects biofilm formation in bacteria. Indian J. Microbiol. 50: 362-368.   DOI   ScienceOn
4 Huang R, Zhou X, Xu T, Yang X, Liu Y. 2010. Diketopiperazines from marine organisms. Chem. Biodivers. 7: 2809-2829.   DOI   ScienceOn
5 Almagro-Moreno S, Boyd FF. 2009. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol. Biol. 9:118.   DOI   ScienceOn
6 Beyhan S, Bilecen K, Salama SR, Casper-Lindley C, Yildiz FH. 2007. Regulation of rugosity and biofilm formation in Vibrio cholerae: comparison o f VpsT and VpsR regu lons and epistasis analysis of vpsT, vpsR, and hapR. J. Bacteriol. 189: 388-402.   DOI   ScienceOn
7 Bina XR, Bina JE. 2010. The cyclic dipeptide cyclo(Phe-Pro) inhibits cholera toxin and toxin-coregulated pilus production in O1 El Tor Vibrio cholera. J. Bacteriol. 192: 3829-3832.   DOI   ScienceOn
8 Brauns SC, Dealtry G, Milne P, Naude R, Van de Venter M. 2005. Caspase-3 activation and induction of PARP cleavage by cyclic dipeptide cyclo(Phe-Pro) in HT-29 cells. Anticancer Res. 25: 4197-4202.
9 Brauns SC, Milne P, Naude R, Van de Venter M. 2004. Selected cyclic dipeptides inhibit cancer cell growth and induce apoptosis in HT-29 colon cancer cells. Anticancer Res. 24: 1713-1719.
10 Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, et al. 2003. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res. 13: 2577-2587.   DOI   ScienceOn
11 Chu M, Truumees I, Rothofsky ML, Patel MG, Gentile F, Das PR, et al. 1995. Inhibition of c-fos proto-oncogene induction by Sch 52900 and Sch 52901, novel diketopiperazine produced by Gliocladium sp. J. Antibiot. 48: 1440-1445.   DOI
12 Chiang SR, Chuang YC. 2003. Vibrio vulnificus infection: clinical manifestations, pathogenesis, and antimicrobial therapy. J. Microbiol. Immunol. Infect. 36: 81-88.
13 Cotter PA, Stibitz S. 2007. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10: 17-23.   DOI   ScienceOn
14 Park JH, Cho YJ, Chun J, Seok YJ, Lee JK, Kim KS, et al. 2011. Complete genome sequence of Vibrio vulnificus MO6- 24/O. J. Bacteriol. 193: 2062-2063.   DOI   ScienceOn
15 Tutusov RL, Fedorova ND, Jackson JD, Jacob AR, Kiryutin B, Koonin EV, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41.   DOI   ScienceOn
16 Wen YC, Kim IH, Son JS, Lee BH, Kim KS. 2012. Iron and quorum sensing coordinately regulate the expression of vulnibactin biosynthesis in Vibrio vulnificus. J. Biol. Chem. 287: 27727-26739.
17 Xu Q, Dziejman M, Mekalanos JJ. 2003. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc. Natl. Acad. Sci. USA 100: 1286-1291.   DOI   ScienceOn
18 Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628.   DOI   ScienceOn
19 Ortiz-Castro R, Díaz-Perez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J. 2011. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc. Natl. Acad. Sci. USA 108: 7253-7258.   DOI   ScienceOn
20 Park DK, Lee KE, Baek CH, Kim IH, Kwon JH, Lee WK, et al. 2006. Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp. J. Bacteriol. 188: 2214-2221.   DOI   ScienceOn
21 Rajagopalan S, Teter SJ, Zwart PH, Brennan RG, Phillips KJ, Kiley PJ. 2013. Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat. Struct. Mol. Biol. 20: 740-747.   DOI   ScienceOn
22 Rhee KH. 2002. Inhibition of DNA topoisomerase I by cyclo(L-prolyl-L-phenylalanyl) isolated from Streptomyces sp. AMLK-335. J. Microbiol. Biotechnol. 12: 1013-1016.
23 Rhee KH. 2004. Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int. J. Antimicrob. Agents 24: 423-427.   DOI   ScienceOn
24 Roux N, Spagnolo J, de Bentzmann S. 2012. Neglected but amazingly diverse type IVb pili. Res. Microbiol. 163: 659-673.   DOI   ScienceOn
25 Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. 2006. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7: 3.   DOI   ScienceOn
26 Simpson LM, Oliver JD. 1983. Siderophore production by Vibrio vulnificus. Infect. Immun. 41: 644-649.
27 Jenal U, Malone J. 2006. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40: 385-407.   DOI   ScienceOn
28 Strom K, Sjogren J, Broberg A, Schnurer J. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3- phenyllactic acid. Appl. Environ. Microbiol. 68: 4322-4327.   DOI   ScienceOn
29 Tischler AD, Lee SH, Camilli A. 2002. The Vibrio cholerae vieSAB locus encodes a pathway contributing to cholera toxin production. J. Bacteriol. 184: 4104-4113.   DOI
30 Hwang J , Kim BS, Jang SY, L im JG, You DJ, Jung HS, et al. 2013. Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR. Proc. Natl. Acad. Sci. USA 110: E2829-E2837.   DOI   ScienceOn
31 Kim BS, Hwang J, Kim MH, Choi SH. 2011. Cooperative regulation of the Vibrio vulnificus nan gene cluster by NanR protein, cAMP receptor protein, and N-acetylmannosamine 6-phosphate. J. Biol. Chem. 25: 40889-40899.
32 Kim HS, Park SJ, Lee KH. 2009. Role of NtrC-regulated exopolysaccharides in the biofilm formation and pathogenic interaction of Vibrio vulnificus. Mol. Microbiol. 74: 436-453.   DOI   ScienceOn
33 Klose KE. 2006. Increased chatter: cyclic dipeptides as molecules of chemical communication in Vibrio spp. J. Bacteriol. 188: 2025-2026.   DOI   ScienceOn
34 Lee JT, Jayaraman A, Wood TK. 2007. Indole is an interspecies biofilm signal mediated by SdiA. BMC Microbiol. 7: 42.   DOI   ScienceOn
35 Lee SE, Shin SH, Kim SY, Kim YR, Shin DH, Chung SS, et al. 2000. Vibrio vulnificus has the transmembrane transcription activator ToxRS stimulating the expression of the hemolysin gene vvhA. J. Bacteriol. 182: 3405-3415.   DOI
36 Li J, Wang W, Xu SX, Magarvey NA, McCormick JK. 2011. Lactobacillus reuteri-produced cyclic dipeptides quench agrmediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc. Natl. Acad. Sci. USA 108: 3360-3365.   DOI   ScienceOn
37 Cronan JM, Davidson TR, Singleton FL, Colwell RR, Cardellina JH. 1998. Plant growth promoters isolated from a marine bacterium associated with Palythoa sp. Nat. Prod. Lett. 11: 271-278.   DOI   ScienceOn
38 Lubin JB, Kingston JJ, Chowdhury N, Boyd FF. 2012. Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus. Appl. Environ. Microbiol. 78: 3407-3415.   DOI
39 Milne P J, Hu nt A L, R ostoll K, V an der W alt JJ, Graz CJ. 1998. The biological activity of selected cyclic dipeptides. J. Pharm. Pharmacol. 50: 1331-1337.   DOI   ScienceOn
40 Morrison SS, Williams T, Cain A, Froelich B, Taylor C, Baker-Austin C, et al. 2012. Pyrosequencing-based comparative genome analysis of Vibrio vulnificus environmental isolates. PLoS One 7: e37553.   DOI
41 Degrassi G, Aguilar C, Bosco M, Zahariev S, Pongor S, Venturi V. 2002. Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: crosstalk with quorum sensing bacterial sensors. Curr. Microbiol. 45: 250-254.   DOI
42 de Carvalho MP, Abraham WR. 2012. Antimicrobial and biofilm inhibiting diketopiperazines. Curr. Med. Chem. 19: 3564-3577.   DOI
43 de Kievit TR, Iglewski BH. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68: 4839-4849.   DOI   ScienceOn
44 Giel JL, Nesbit AD, Mettert EL, Fleischhacker AS, Wanta BT, Kiele PJ. 2013. Regulation of iron-sulfur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe- 2S]-IscR in Escherichia coli. Mol. Microbiol. 87: 478-492.   DOI   ScienceOn
45 Graz CJ, Grant GD, Brauns SC, Hunt A, Jamie H, Milne PJ. 2000. Cyclic dipeptides in the induction of maturation for cancer therapy. J. Pharm. Pharmacol. 52: 75-82.   DOI   ScienceOn
46 Graz M, H u nt A , Jamie H, G rant G , Milne P. 1 999. Antimicrobial activity of selected cyclic dipeptides. Pharmazie 54: 772-775.
47 Childers BM, Klose KE. 2007. Regulation of virulence in Vibrio cholera: the ToxR regulon. Future Microbiol. 2: 335-344.   DOI
48 Martinez-Wilson HF, Tamayo R, Tischler AD, Lazinski DW, Camilli A. 2008. The Vibrio cholerae hybrid sensor kinase VieS contributes to motility and biofilm regulation by altering the cyclic diguanylate level. J. Bacteriol. 190: 6439-6447.   DOI   ScienceOn
49 Finelli A, Gallant CV, Jarvi K, Burrows LL. 2003. Use of inbiofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185: 2700-2710.   DOI