Browse > Article
http://dx.doi.org/10.4014/jmb.1302.02057

Media Optimization for Laccase Production by Trichoderma harzianum ZF-2 Using Response Surface Methodology  

Gao, Huiju (College of Forestry, Shandong Agricultural University)
Chu, Xiang (College of Forestry, Shandong Agricultural University)
Wang, Yanwen (College of Forestry, Shandong Agricultural University)
Zhou, Fei (College of Forestry, Shandong Agricultural University)
Zhao, Kai (College of Forestry, Shandong Agricultural University)
Mu, Zhimei (College of Forestry, Shandong Agricultural University)
Liu, Qingxin (College of Forestry, Shandong Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.12, 2013 , pp. 1757-1764 More about this Journal
Abstract
Trichoderma harzianum ZF-2 producing laccase was isolated from decaying samples from Shandong, China, and showed dye decolorization activities. The objective of this study was to optimize its culture conditions using a statistical analysis of its laccase production. The interactions between different fermentation parameters for laccase production were characterized using a Plackett-Burman design and the response surface methodology. The different media components were initially optimized using the conventional one-factor-at-a-time method and an orthogonal test design, and a Plackett-Burman experiment was then performed to evaluate the effects on laccase production. Wheat straw powder, soybean meal, and $CuSO_4$ were all found to have a significant influence on laccase production, and the optimal concentrations of these three factors were then sequentially investigated using the response surface methodology with a central composite design. The resulting optimal medium components for laccase production were determined as follows: wheat straw powder 7.63 g/l, soybean meal 23.07 g/l, $(NH_4)_2SO_4$ 1 g/l, $CuSO_4$ 0.51 g/l, Tween-20 1 g/l, $MgSO_4$ 1 g/l, and $KH_2PO_4$ 0.6 g/l. Using this optimized fermentation method, the yield of laccase was increased 59.68 times to 67.258 U/ml compared with the laccase production with an unoptimized medium. This is the first report on the statistical optimization of laccase production by Trichoderma harzianum ZF-2.
Keywords
Trichoderma harzianum ZF-2; media optimization; laccase production; response surface methodology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Collins PJ, Dobson ADW. 1997. Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 63: 3444-3450.
2 Dittmer JK, Patel NJ, Dhawale SW, Dhawale SS. 1997. Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiol. Lett. 149: 65-70.   DOI   ScienceOn
3 Eggert C, Temp U, Eriksson KEL. 1996. The ligninolytic system of the white-rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62: 1151-1158.
4 Gao HJ, Wang YW, Zhang WT, Wang WL, Mu ZM. 2011. Isolation, identification and application in lignin degradation of an ascomycete GHJ-4. Afr. J. Biotechnol. 10: 4166-4174.
5 Gianfreda L, Xu F, Bollag JM. 1999. Laccases: a useful group of oxidoreductive enzymes. Bioremediat. J. 3: 1-26.   DOI   ScienceOn
6 Gochev VK, Krastanov AI. 2007. Isolation of laccase producing Trichoderma spp. Bulg. J. Agric. Sci. 13: 171-176.
7 Gomes SA, Rebelo MJ. 2003. A new laccase biosensor for polyphenols determination. Sensors 3: 166-175.   DOI
8 Power T, Ortoneda M, Morrissey JP, Dobson ADW. 2006. Differential expression of genes involved in iron metabolism in Aspergillus fumigatus. Int. Microbiol. 9: 281-287.
9 Rodríguez A, Falcon MA, Carnicero A, Perestelo F, De la Fuente G, Trojanowski J. 1996. Laccase activities of Penicillium chrysogenum in relation to lignin degradation. Appl. Microbiol. Biotechnol. 45: 399-403.   DOI
10 Savoie JM, Mata G, Billette C. 1998. Extracellular laccase production during hyphal interactions between Trichoderma sp. and Shiitake, Lentinula edodes. Appl. Microbiol. Biotechnol. 49: 589-593.   DOI   ScienceOn
11 Sethuraman A, Akin DE, Erriksson KE. 1999. Production of ligninolytic enzymes and synthetic lignin mineralization by the bird's nest fungus Cyathus stercoreus. Appl. Mcirobiol. Biotechnol. 52: 689-697.   DOI
12 Sharma KK, Kapoor M, Kuhad RC. 2005. In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Lett. Appl. Microbiol. 41: 24-31.   DOI   ScienceOn
13 Soden DM, Dobson ADW. 2001. Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147: 1755-1763.
14 Vasconcelos AFD, Barbosa AM, Dekker RFH, Scarmínio IS, Rezende MI. 2000. Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method. Process Biochem. 35: 1131-1138.   DOI   ScienceOn
15 Holker U, Dohse J, Hofer M. 2002. Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol. 47: 423-427.   DOI
16 Velazquez-Cedeiio MA, Farnet AM, Ferre E, Savoie JM. 2004. Variations of lignocellulosic activities in dual cultures of Pleurotus ostreatus and Trichoderma longibrachiatum on unsterilized wheat straw. Mycologia 96: 712-719.   DOI
17 Warsinke A, Benkert A, Scheller FW. 2000. Electrochemical immunoassays. Fresen. J. Anal. Chem. 366: 622-634.   DOI   ScienceOn
18 Zhang SX, Xiao YZ, Wang YP. 2004. Immobilization of fungal laccase on nylon net and application of the immobilized enzyme. Microbiology 31: 85-88.
19 Jing DB, Li PJ, Stagnitti F, Xiong XZ. 2007. Optimization of laccase production from Trametes versicolor by solid fermentation. Can. J. Microbiol. 53: 245-251.   DOI
20 Kantelinen A, Hatakka A, Viikari L. 1989. Production of lignin peroxidase and laccase by Phlebia radiata. Appl. Microbiol. Biotechnol. 31: 234-239.
21 Lee IY, Jung KH, Lee CH, Park YH. 1999. Enhanced production of laccase in Trametes versicolor by the addition of ethanol. Biotechnol. Lett. 21: 965-968.   DOI   ScienceOn
22 Nemec T, Jernejc K. 2002. Influence of Tween 80 on lipid metabolism of an Aspergillus niger strain. Appl. Biochem. Biotechnol. 101: 229-238.   DOI   ScienceOn
23 Nyanhongo GS, Gomes J, Gubitz GM, Zvauya R, Read JS, Steiner W. 2002. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res. 36: 1449-1456.   DOI   ScienceOn
24 Nyanhongo G, Gomes J, Cubitz G, Zvauya R, Read J, Steiner W. 2002. Production of laccase by a newly isolated strain of Trametes modesta. Bioresour. Technol. 84: 259-263.   DOI   ScienceOn
25 Pointing SB, Pelling AL, Smith GJD, Hyde KD, Reddy CA. 2005. Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol. Res. 109: 115-124.   DOI   ScienceOn
26 Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G. 2000. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 66: 920-924.   DOI   ScienceOn
27 Paramjit KB, Daljit SA. 2009. Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus. Can. J. Microbiol. 55: 1397-1402.   DOI
28 Patel H, Gupte A, Gupte S. 2009. Effect of different cultural conditions and inducers on production of laccase by a basidiomycete fungal isolate Pleurotus ostreatus HP-1 under solid state fermentation. Bioresources 4: 268-284.
29 Pointing SB, Jones EBG, Vrijmoed LLP. 2000. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92: 139-144.   DOI   ScienceOn
30 Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco PA, Gubitz G. 2000. Decolorization and detoxication of textile dyes with a laccase from Trametes hirsuta. Appl. Environ. Microbiol. 66: 3357-3362.   DOI   ScienceOn
31 Assavanig A, Amornkitticharoen B, Ekpaisal N, Meevootisom V, Flegel TM. 1992. Isolation, characterization and function of laccase from Trichoderma. Appl. Microbiol. Biotechnol. 38: 198-202.
32 Bollag JM, Leonowicz A. 1984. Comparative studies of extracellular fungal laccases. Appl. Environ. Microbiol. 48: 849-854.
33 Box GEP, Wilson KB. 1951. On the experimental attainment of optimum conditions. J. Roy. Stat. Soc. B 13: 145.
34 Chen T, Barton SC, Binyamin G, Gao Z, Zhang Y, Kim HH, et al. 2001. A miniature biofuel cell. J. Am. Chem. Soc. 123: 8630-8631.   DOI   ScienceOn
35 Stajic M, Persky L, Friesem D, Hadar Y, Wasser SP, Nevo E, et al. 2006. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme Microb. Technol. 38: 65-73.   DOI   ScienceOn