Browse > Article
http://dx.doi.org/10.4014/jmb.1306.06062

Extracellular Novel Metalloprotease from Xenorhabdus indica and Its Potential as an Insecticidal Agent  

Pranaw, Kumar (Division of Microbiology, Indian Agricultural Research Institute)
Singh, Surender (Division of Microbiology, Indian Agricultural Research Institute)
Dutta, Debjani (Department of Biotechnology, National Institute of Technology)
Singh, Nirpendra (Central Instrumentation Facility, Biotech Center, University of Delhi South Campus)
Sharma, Garima (Division of Entomology, Indian Agricultural Research Institute)
Ganguly, Sudershan (Division of Nematology, Indian Agricultural Research Institute)
Kalia, Vinay (Division of Entomology, Indian Agricultural Research Institute)
Nain, Lata (Division of Microbiology, Indian Agricultural Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.11, 2013 , pp. 1536-1543 More about this Journal
Abstract
Proteases produced by Xenorhabdus are known to play a significant role in virulence leading to insect mortality. The present study was undertaken to purify and characterize protease from Xenorhabdus indica, an endosymbiont of nematode Steinernema thermophilum, and to decipher its role in insect mortality and its efficacy to control Helicoverpa armigera. A set of 10 strains of Xenorhabdus isolated from different regions of India were screened for protease activity on the basis of zone of clearing on gelatin agar plates. One potent strain of Xenorhabdus indica was selected for the production of protease, and the highest production (1,552 U/ml) was observed at 15-18 h of incubation at $28^{\circ}C$ in soya casein digest broth. The extracellular protease was purified from culture supernatant using ammonium sulfate precipitation and ion-exchange chromatography. The enzyme was further characterized by SDS-PAGE and zymography, which confirmed the purity of the protein and its molecular mass was found to be ~52 kDa. Further MALDI-TOF/TOF analysis and effect of metal chelating agent 1,10-phenanthrolin study revealed the nature of the purified protease as a secreted alkaline metalloprotease. The bioefficacy of the purified protease was also tested against cotton bollworm (Helicoverpa armigera) and resulted in $67.9{\pm}0.64%$ mortality within one week. This purified protease has the potential to be developed as a natural insecticidal agent against a broad range of agriculturally important insects.
Keywords
Entomopathogenic nematode; alkaline metalloprotease; Xenorhabdus indica; MALDI-TOF; Helicoverpa armigera;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chattopadhyay A, Bhatnagar NB, Bhatnagar R. 2004. Bacterial insecticidal toxins. Crit. Rev. Microbiol. 30: 33-54.   DOI   ScienceOn
2 Adams BJ, Fodor A, Koppenhöfer HS, Stackebrandt E, Patricia Stock S, Klein MG. 2006. Biodiversity and systematics of nematode-bacterium entomopathogens. Biol. Control 37: 32-49.   DOI   ScienceOn
3 Akhurst RJ. 1982. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J. Gen. Microbiol. 128: 3061-3065.
4 Bode HB. 2009. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13: 224-230.   DOI   ScienceOn
5 Caldas C, Cherqui A, Pereira A, Simoes N. 2002. Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression. Appl. Environ. Microbiol. 68: 1297-1304.   DOI   ScienceOn
6 Chaston JM, Suen G, Tucker SL, Andersen AW, Bhasin A, Bode E, et al. 2011. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS ONE 6: e27909.   DOI   ScienceOn
7 Chen G, Zhang Y, Li J, Dunphy GB, Punja ZK, Webster JM. 1996. Chitinase activity of Xenorhabdus and Photorhabdus species, bacterial associates of entomopathogenic nematodes. J. Invertebr. Pathol. 68: 101-108.   DOI   ScienceOn
8 Dowling A, Waterfield NR. 2007. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49: 436-451.   DOI   ScienceOn
9 Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, et al. 2003. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnol. 21: 1307-1313.   DOI   ScienceOn
10 Dulmage HT, Correa JA, Martinez AJ. 1970. Coprecipitation with lactose as a means of recovering the spore-crystal complex of Bacillus thuringiensis. J. Invertebr. Pathol. 15: 15-20.   DOI
11 Han R, Ehlers RU. 2000. Pathogenicity, development, and reproduction of Heterorhabditis bactoriophora and Steinernema carpocapsae u nder a x enic in vivo conditions. J. Invertebr. Pathol. 75: 55-58.   DOI   ScienceOn
12 Felfoldi G, Marokhazi J, Kepiro M, Venekei I. 2009. Identification of natural target proteins indicates functions of a serralysin-type metalloprotease, PrtA, in anti-immune mechanisms. Appl. Environ. Microbiol. 75: 3120-3126.   DOI   ScienceOn
13 Furgani G, Boszormenyi E, Fodor A, Mathe-Fodor A, Forst S, Hogan JS, et al. 2008. Xenorhabdus antibiotics: a comparative analysis and potential utility for controlling mastitis caused by bacteria. J. Appl. Microbiol. 104: 745-758.   DOI   ScienceOn
14 Kalia V, Chaudhari S, Gujar G. 2001. Changes in haemolymph constituents of American bollworm, Helicoverpa armigera (Hübner), infected with nucleopolyhedrovirus. Indian J. Exp. Biol. 39: 1123.
15 Gujar G, Kumari A, Kalia V, Chandrashekar K. 2000. Spatial and temporal variation in susceptibility of the American bollworm, Helicoverpa armigera (Hübner) to Bacillus thuringiensis var. kurstaki in India. Curr. Sci. 78: 995-1001.
16 Herbert EE, Goodrich-Blair H. 2007. Friend and foe: the two faces of Xenorhabdus nematophila. Nature Rev. Microbiol. 5: 634-646.   DOI   ScienceOn
17 James RR, Xu J. 2012. Mechanisms by which pesticides affect insect immunity. J. Invertebr. Pathol. 109: 175-182.   DOI   ScienceOn
18 Kim D, Forst S. 2005. Xenorhabdus nematophila: mutualist and pathogen. ASM News 71: 174-178.
19 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
20 Massaoud MK, Marokhazi J, Venekei I. 2011. Enzymatic characterization of a serralysin-like metalloprotease from the entomopathogen bacterium, Xenorhabdus. Biochim. Biophys. Acta 1814: 1333-1339.   DOI   ScienceOn
21 Mann M, Hendrickson RC, Pandey A. 2001. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70: 437-473.   DOI   ScienceOn
22 Marokhazi J, Lengyel K, Pekar S, Felfoldi G, Patthy A, Graf L, et al. 2004. Comparison of proteolytic activities produced by entomopathogenic Photorhabdus bacteria: strain- and phase-dependent heterogeneity in composition and activity of four enzymes. Appl. Environ. Microbiol. 70: 7311-7320.   DOI   ScienceOn
23 Marokhazi J, Mihala N, Hudecz F, Fodor A, Graf L, Venekei I. 2007. Cleavage site analysis of a serralysin-like protease, PrtA, from an insect pathogen Photorhabdus luminescens and development of a highly sensitive and specific substrate. FEBS J. 274: 1946-1956.
24 Nagarkatti S, Prakash S. 1974. Rearing Heliothis armigera (Hb.) on artificial diet. Tech. Bull. Commonw. Inst. Biol. Contr. 17: 169-173.
25 Simoes N, Caldas C, Rosa JS, Bonifassi E, Laumond C. 2000. Pathogenicity caused by high virulent and low virulent strains of Steinernema carpocapsae to Galleria mellonella. J. Invertebr. Pathol. 75: 47-54.   DOI   ScienceOn
26 Patil U, Chaudhari A. 2009. Purification and characterization of solvent-tolerant, thermostable, alkaline metalloprotease from alkalophilic Pseudomonas aeruginosa MTCC 7926. J. Chem. Technol. Biotechnol. 84: 1255-1262.   DOI   ScienceOn
27 Richards GR, Goodrich-Blair H. 2010. Examination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny productions. Appl. Environ. Microbiol. 76: 221-229.   DOI   ScienceOn
28 Ross GES. 1977. Maximum Likelihood Programme. The Numerical Algorithims Gr. Rothmested Experiment Station, Harpendon, UK.
29 Sarath G, Dela Motte RS, Wagner FW. 1989. Protease assay methods. In Beynon RJ, Bond JS (eds.). Proteolytic Enzymes; A Practical Approach. Oxford University Press, Oxford, England.
30 Schmidt T, Kopecky K, Nealson K. 1989. Bioluminescence of the insect pathogen Xenorhabdus luminescens. Appl. Environ. Microbiol. 55: 2607-2612.
31 Schmidt TM, Bleakley B, Nealson KH. 1988. Characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens. Appl. Environ. Microbiol. 54: 2793-2797.
32 32. Tork SE, Shahein YE, El-Hakim AE, Abdel-Aty AM, Aly MM. 2013. Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. Int. J. Biol. Macromol. 55: 169-175.   DOI   ScienceOn
33 Wang Y, Fang X, An F, Wang G, Zhang X. 2011. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb. Cell Fact. NOV. 14: 98.
34 Wilkinson J. 1986. Fragmentation of polypeptides by enzymic methods, pp. 121-148. In Darbre A (ed.). Practical Protein Chemistry: A Handbook. John Wiley and Sons, New York, NY.
35 Yang J, Zeng H-M, Lin H-F, Yang X-F, Liu Z, Guo L-H, et al. 2012. An insecticidal protein from Xenorhabdus budapestensis that results in prophenoloxidase activation in the wax moth, Galleria mellonella. J. Invertebr. Pathol. 110: 60-67.   DOI   ScienceOn