Browse > Article
http://dx.doi.org/10.4014/jmb.1111.11040

Detection of Polyhydroxyalkanoate-Accumulating Bacteria from Domestic Wastewater Treatment Plant Using Highly Sensitive PCR Primers  

Huang, Yu-Tzu (Department of Bioenvironmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University)
Chen, Pi-Ling (Department of Bioenvironmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University)
Semblante, Galilee Uy (Department of Bioenvironmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University)
You, Sheng-Jie (Department of Bioenvironmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.8, 2012 , pp. 1141-1147 More about this Journal
Abstract
Polyhydroxyalkanoate (PHA) is a class of biodegradable plastics that have great potential applications in the near future. In this study, the micro-biodiversity and productivity of PHA-accumulating bacteria in activated sludge from a domestic wastewater treatment plant were investigated. A previously reported primer set and a self-designed primer set (phaCF1BO/phaCR2BO) were both used to amplify the PHA synthase (phaC) gene of isolated colonies. The new primers demonstrated higher sensitivity for phaC, and combining the PCR results of the two primer sets was able to widen the range of detected genera and raise the sensitivity to nearly 90%. Results showed that 85.3% of the identified bacteria were Gram-negative, with Ralstonia as the dominant genus, and 14.7% were Gram-positive. In addition, Zoogloea and Rhizobium contained the highest amounts of intracellular PHA. It is apparent that glucose was a better carbon source than pentone or tryptone for promoting PHA production in Micrococcus. Two different classes, class I and class II, of phaC were detected from alphaproteobacteria, betaproteobacteria, and gammaproteobacteria, indicating the wide diversity of PHA-accumulating bacteria in this particular sampling site. Simultaneous wastewater treatment and PHA production is promising by adopting the high PHA-accumulating bacteria isolated from activated sludge.
Keywords
Polyhydroxyalkanoate; wastewater; PHA synthase gene; PCR; activated sludge;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Amann, R. I., W. Ludwig, and K. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
2 Bengtsson, S., A. Werker, M. Christensson, and T. Welander. 2008. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour. Technol. 99: 509-516.   DOI   ScienceOn
3 Cerrone, F., M. Sanchez-Peinado, B. Juarez-Jimenez, J. Gonzalez-Lopez, and C. Pozo. 2010. Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): Polyhydroxyalkanoates (PHAs) production by Azotobacter strains. J. Microbiol. Biotechnol. 20: 594-601.
4 Chakravarty, P., V. Mhaisalkar, and T. Chakrabarti. 2010. Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system. Bioresour. Technol. 101: 2896-2899.   DOI   ScienceOn
5 Chanprateep, S. 2010. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 110: 621-632.   DOI   ScienceOn
6 Chua, A. S. M., H. Takabatake, H. Satoh, and T. Mino. 2003. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: Effect of pH, sludge retention time (SRT), and acetate concentration in influent. Water Res. 37: 3602-3611.   DOI   ScienceOn
7 Ciesielski, S., A. Cydzik-Kwiatkowska, T. Pokoj, and E. Klimiuk. 2006. Molecular detection and diversity of mediumchain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. J. Appl. Microbiol. 101: 190-199.   DOI   ScienceOn
8 Ciesielski, S., P. Tomasz, and E. Klimiuk. 2010. Cultivationdependent and -independent characterization of microbial community producing polyhydroxyalkanoates from rawglycerol. J. Microbiol. Biotechnol. 20: 853-861.   DOI   ScienceOn
9 Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346.
10 Gomez, J. G. C., M. F. A. Rodrigues, R. C. P. Alli, B. B. Torres, C. L. B. Netto, M. S. Oliveira, and L. F. da Silva. 1996. Evaluation of soil Gram-negative bacteria yielding polyhydroxyalkanoic acids from carbohydrates and propionic acid. Appl. Microbiol. Biotechnol. 45: 785-791.   DOI   ScienceOn
11 Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
12 Mengmeng, C., C. Hong, Z. Qingliang, S. N. Shirley, and R. Jie. 2009. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresour. Technol. 100: 1399-1405.   DOI   ScienceOn
13 Khardenavis, A. A., M. S. Kumar, S. N. Mudliar, and T. Chakrabarti. 2007. Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly beta-hydroxybutyrate. Bioresour. Technol. 98: 3579-3584.   DOI   ScienceOn
14 Kim, Y. and R. Lenz. 2001. Polyesters from microorganisms. Adv. Biochem. Eng. Biotechnol. 71: 51-79.
15 Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522.
16 Reddy, C. S. K., R. Ghai, Rashmi, and V. C. Kalia. 2003. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 87: 137-146.   DOI   ScienceOn
17 Shah, A. A., F. Hasan, and A. Hameed. 2010. Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a newly isolated Actinomadura sp. AF-555, from soil. Int. Biodeteriol. Biodegrad. 64: 281-285.   DOI   ScienceOn
18 Shamala, T. R., A. Chandrashekar, S. V. N. Vijayendra, and L. Kshama. 2003. Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J. Appl. Microbiol. 94: 369-374.   DOI   ScienceOn
19 Sheu, D. S., Y. T. Wang, and C. Y. Lee. 2000. Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146: 2019-2025.
20 Solaiman, D. K. Y., R. D. Ashby, and T. A. Foglia. 2000. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53: 690-694.   DOI   ScienceOn
21 Solaiman, D. K. Y., R. D. Ashby, and T. A. Foglia. 2002. Synthesis of poly(hydroxyalkanoates) by Escherichia coli expressing mutated and chimeric PHA synthase genes. Biotechnol. Lett. 24: 1011-1016.   DOI   ScienceOn
22 Steinbuchel, A. and T. Lutke-Eversloh. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16: 81-96.   DOI   ScienceOn
23 Suriyamongkol, P., R. Weselake, S. Narine, M. Moloney, and S. Shah. 2007. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnol. Adv. 25: 148-175.   DOI   ScienceOn
24 Taguchi, S., H. Nakamura, T. Kichise, T. Tsuge, I. Yamato, and Y. Doi. 2003. Production of polyhydroxyalkanoate (PHA) from renewable carbon sources in recombinant Ralstonia eutropha using mutants of original PHA synthase. Biochem. Eng. J. 16: 107-113.   DOI   ScienceOn
25 Tsuge, T. 2002. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J. Biosci. Bioeng. 94: 579-584.