Browse > Article
http://dx.doi.org/10.4014/jmb.1110.10002

Properties of Bac W42, a Bacteriocin Produced by Bacillus subtilis W42 Isolated from Cheonggukjang  

Kindoli, Salum (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University)
Lee, Hwang A (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University)
Kim, Jeong Hwan (Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.8, 2012 , pp. 1092-1100 More about this Journal
Abstract
Ten Bacillus strains with antimicrobial activities were isolated from Cheonggukjang produced at different parts in Korea. They all inhibited Listeria monocytogenes ATCC 19111 and nine inhibited Bacillus cereus ATCC 14579. Four isolates (W42, H27, SKE 12, and K21) showing strong inhibiting activities were identified as B. subtilis. B. subtilis W42 was the most inhibiting strain. The antimicrobial activity of culture supernatant from B. subtilis W42 was destroyed completely by proteinase K treatment, indicating that a bacteriocin was the responsible agent. The bacteriocin, Bac W42, was most stable at pH 7 and stable between pH 3-6 and 8-9. Bac W42 was stable up to $80^{\circ}C$. BHI (brain heart infusion) and TSB (tryptic soy broth) were the best media for the activity (320 AU/ml) followed by LB (160 AU/ml). Bac W42 was partially purified by column chromatographies. The specific activity was increased from 1,151.2 AU/ml to 9,043.5 AU/ml and the final yield was 26.3%. Bac W42 was 5.4 kDa in size as determined by SDS-PAGE. Bac W42 showed bactericidal activity against L. monocytogenes ATCC 19111.
Keywords
Bacteriocin; Cheonggukjang; Bacillus subtilis; food preservative;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi. 1985. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: Isolation, structural analysis, and biogenesis. J. Biochem. 98: 585-603.
2 Bizani, D. and A. Brandelli. 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. strain 8 A. J. Appl. Microbiol. 93: 512-519.   DOI   ScienceOn
3 Bradford, M. M. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
4 Chehimi, S., F. Delalande, S. Sable, M.-R. Hajlaoui, A. V. Dorsselaer, F. Limam, and A.-M. Pons. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290.   DOI   ScienceOn
5 Cherif, A., H. Ouzari, D. Daffonchio, H. Cherif, K. Ben Slama, A. Hassen, et al. 2001. Thuricin 7: A novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. Lett. Appl. Microbiol. 32: 243-247.   DOI   ScienceOn
6 Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000.   DOI   ScienceOn
7 Cladera-Olivera, F., G. R. Caron, and A. Brandelli. 2004. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 38: 251-256.   DOI   ScienceOn
8 Daeschel, M. A. 1992. Bacteriocins of lactic acid bacteria, pp. 57-79. In B. Ray and M. A. Daeschel (eds.). Food Biopreservatives of Microbial Origin. CRC Press, Boca Raton, Florida.
9 Diep, D. B. and I. F. Nes. 2002. Ribosomally synthesized antibacterial peptides in Gram-positive bacteria. Curr. Drugs Target 3: 107-122.   DOI   ScienceOn
10 Galvez, A., R. L. Lopez, H. Abriouel, E. Valdivia, and N. B. Omar. 2008. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28: 125-152.   DOI   ScienceOn
11 Hammami, I., A. Rhouma, B. Jaouadi, A. Rebai, and X. Nesme. 2009. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett. Appl. Microbiol. 48: 253-260.   DOI   ScienceOn
12 Hoover, D. G and S. K. Harlander. 1993. Screening methods for detecting bacteriocin activity, pp 23-39. In D. G. Hoover and L. R. Steenson (eds.). Bacteriocins of Lactic Acid Bacteria. Academic Press, San Diago, California.
13 Hoshonia, A.-M., N. Yamamoto, K. Otawa, C. Tada, and Y. Nakai. 2010. Isolation of bacteriocin substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol. 56: 151-161.   DOI   ScienceOn
14 Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.
15 Joerger, R. D. 2003. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82: 640-647.
16 Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888.   DOI   ScienceOn
17 Kayalvizhi, N. and P. Gunasekaran. 2008. Production and characterization of a low-molecular-weight bacteriocin from Bacillus licheniformis MKU3. Lett. Appl. Microbiol. 47: 600-607.   DOI   ScienceOn
18 Korenblum, E., I. von der Weid, A. L. S. Santos, A. S. Rosado, G. V. Sebastián, C. M. L. M. Coutinho, et al. 2005. Production of antimicrobial substances by Bacillus subtilis LFE-1, B. firmus $H_2O$-1 and B. licheniformis T6-5 isolated from an oil reservoir in Brazil. J. Appl. Microbiol. 98: 667-675.   DOI   ScienceOn
19 Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-86.
20 Klein, C., C. Kaletta, N. Schnell, and K.-D. Entian. 1992. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl. Environ. Microbiol. 58: 132-142.
21 Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M. C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins produced by Bacillus coagulans $I_4$. Appl. Environ. Microbiol. 66: 5213-5220.   DOI   ScienceOn
22 Lisboa, M. P., D. Bonatto, D. Bizani, J. A. Henriques, and A. Brandelli. 2006. Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int. Microbiol. 9: 111-116.
23 Maisnier-Patin, S., N. Deschamps, S. R. Tatini, and J. Richard. 1992. Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72: 249-263.   DOI
24 Martinez, M. A., O. D. Delgado, J. D. Breccia, M. D. Baigori, and F. Sineriz. 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6: 391-395.   DOI   ScienceOn
25 Nicolas, G. G., G. LaPointe, and C. M. Lavoie. 2011. Production, purification, sequencing and activity spectra of mutacins D-123.1 and F-59.1. BMC Microbiol. 11: 69.   DOI   ScienceOn
26 Risoen, P. A., P. Ronning, I. K. Hegna, and A.-B. Kolsto. 2004. Characterization of a broad range antimicrobial substance from Bacillus cereus. J. Appl. Microbiol. 96: 648-655.   DOI   ScienceOn
27 Nissen-Meyer, J. and I. F. Nes. 1997. Ribosomally synthesized antimicrobial peptides: Their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167: 67-77.   DOI   ScienceOn
28 Oman, T. J., J. M. Boettcher, H. Wang, X. N. Okalibe, and W. A. van der Donk. 2011. Sublancin is not a lantibiotic but an Slinked glycopeptides. Nat. Chem. Biol. 7: 78-80.   DOI   ScienceOn
29 Riazi, S., R. E. Wirawan, V. Badmaev, and M. L. Chikindas. 2009. Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. J. Appl. Microbiol. 106: 1370-1377.   DOI   ScienceOn
30 Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.   DOI   ScienceOn
31 Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulphate polyacylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379.   DOI   ScienceOn
32 Settanni, L. and A. Corsetti. 2008. Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol. 121: 123-138.   DOI   ScienceOn
33 Sharma, N., G. Kapoor, and B. Neopaney. 2006. Characterization of a new bacteriocin from a novel isolated strain of Bacillus lentus NG121. Antonie Van Leeuwenhoek 89: 337-343.   DOI   ScienceOn
34 Xie, J., R. Zhang, C. Shang, and J. Guo. 2009. Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol. 8: 5611-5619.
35 Sitori, L. R., F. C. Olivera, D. M. Lorenzini, S. M. Tsai, and A. Brandelli. 2006. Purification and partial characterization of an antimicrobial peptide produced by Bacillus sp. strain P45, a bacterium from the Amazon basin fish Piaractus mesopotamicus. J. Gen. Appl. Microbiol. 52: 357-363.   DOI   ScienceOn
36 Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.   DOI   ScienceOn
37 Tabbene, O., I. B. Slimene, F. Bouabdallah, M.-L. Mangoni, M.-C. Urdaci, and F. Limam. 2009. Production of antimethicillin-resistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl. Biochem. Biotechnol. 157: 407-419.   DOI