Browse > Article
http://dx.doi.org/10.4014/jmb.1112.11085

Investigations on Possible Roles of C-Terminal Propeptide of a Ca-Independent ${\alpha}$-Amylase from Bacillus  

Salimi, Ali (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University)
Yousefi, Fatemeh (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University)
Ghollasi, Marzieh (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University)
Daneshjou, Sara (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University)
Tavoli, Hesam (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University)
Ghobadi, Sirous (Department of Biology, Faculty of Science, Razi University of Kermanshah)
Khajeh, Khosro (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.8, 2012 , pp. 1077-1083 More about this Journal
Abstract
Previously, an extracellular ${\alpha}$-amylase (BKA) had been purified from the culture of Bacillus sp. KR8104. Subsequently, the crystal structure of the active enzyme revealed a 422 amino acids polypeptide. In this study, the bka was cloned into E. coli, which encoded a polypeptide of 659 amino acids including two additional fragments: one 44 residues N-terminal fragment and another 193 residues C-terminal fragment. In order to investigate the role of the C-terminal fragment, two constructs with and without this region [$BKA{\Delta}$(N44) and $BKA{\Delta}$(N44C193)] were designed and expressed in E. coli BL21. The optimum pH, thermal stability, and the end-products of starch hydrolysis were found to be similar in both constructs. The $K_m$ and $V_{max}$ values for $BKA{\Delta}$(N44) were lower than $BKA{\Delta}$(N44C193), using either starch or ethylidene-blocked 4-nitrophenylmaltoheptaoside as a substrate.
Keywords
${\alpha}$-Amylase; Bacillus sp. KR-8104; biochemical characterization; secretion; truncation;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
2 Bron, S., A. Bolhuis, H. Tjalsma, S. Holsappel, G. Venema, and J. M. van Dijl. 1998. Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli. J. Biotechnol. 64: 3-13.   DOI   ScienceOn
3 Chen, X., P. Guo, Z. Xie, and P. Shen. 2001. A convenient and rapid method for genetic transformation of E. coli with plasmids. Antonie Van. Leeuwenhoek 80: 297-300.   DOI   ScienceOn
4 Emori, M., M. Takagi, B. Maruo, and K. Yano. 1990. Molecular cloning, nucleotide sequencing, and expression of the Bacillus subtilis (natto) IAM1212 ${\alpha}$-amylase gene, which encodes an ${\alpha}$-amylase structurally similar to but enzymatically distinct from that of B. subtilis 2633. J. Bacteriol. 172: 4901-4908.
5 Feller, G., S. D'Amico, A. M. Benotmane, F. Joly, J. Van Beeumen, and C. Gerday. 1998. Characterization of the Cterminal propeptide involved in bacterial wall spanning of ${\alpha}$-amylase from the psychrophile Alteromonas haloplanctis. J. Boil. Chem. 273: 12109-12115.   DOI   ScienceOn
6 Fu, L. L., Z. R. Xu, W. F. Li, J. B. Shuai, P. Lu, and C. X. Hu. 2007. Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25: 1-12.
7 Fujimoto, Z., K. Takase, N. Doui, M. Momma, T. Matsumoto, and H. Mizuno. 1998. Crystal structure of a catalytic-site mutant ${\alpha}$-amylase from Bacillus subtilis complexed with maltopentaose. J. Mol. Biol. 277: 393-407.   DOI   ScienceOn
8 Harwood, C. R. and R. Cranenburgh. 2008. Bacillus protein secretion: An unfolding story. Trends Microbiol. 16: 73-79.   DOI   ScienceOn
9 Hmidet, N., A. Bayoudh, J. Guy Berrin, S. Kanoun, N. Juge, and M. Nasri. 2008. Purification and biochemical characterization of a novel ${\alpha}$-amylase from Bacillus licheniformis NH1 cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. J. Process Biochem. 43: 499-510.   DOI   ScienceOn
10 Kruse-Jarres, J. D., C. Kaiser, J. C. Hafkenscheid, W. Hohenwallner, W. Stein, J. Bohner, et al. 1989. Evaluation of a new ${\alpha}$-amylase assay using 4,6-ethylidene-(G7)-1-4-nitrophenyl-(G1)-${\alpha}$-D-maltoheptaoside as substrate. J. Clin. Chem. Clin. Biochem. 27: 103-113.
11 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
12 Le Loir, Y., A. Gruss, S. D. Ehrlich, and P. Langella. 1998. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J. Bacteriol. 180: 1895-1903.
13 Leveque, E., B. Haye, and A. Belarbi. 2000. Cloning and expression of an ${\alpha}$-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterisation of the recombinant enzyme. FEMS Microbiol. Lett. 186: 67-71.
14 Lin, L. L., W. H. Hsu, and W. S. Chu. 1997. A gene encoding for an ${\alpha}$-amylase from thermophilic Bacillus sp. strain TS-23 and its expression in Escherichia coli. J. Appl. Microbiol. 82: 325-334.   DOI   ScienceOn
15 Nakada, T., M. Kubota, S. Sakai, and Y. Tsujisaka. 1990. Purification and characterization of two forms of maltotetraoseforming amylase from Pseudomonas stutzeri. J. Agric. Biol. Chem. 54: 737-743.   DOI   ScienceOn
16 Malhotra, R., S. M. Noorwez, and T. Satyanarayana. 2000. Production and partial characterization of thermostable and calcium-independent ${\alpha}$-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31: 378-384.   DOI   ScienceOn
17 Marco, J. L., L. A. Bataus, F. F. Valencia, C. J. Ulhoa, S. Astolfi-Filho, and C. R. Felix. 1996. Purification and characterization of a truncated Bacillus subtilis ${\alpha}$-amylase produced by Escherichia coli. Appl. Microbiol. Biotechnol. 44: 746-752.
18 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. J. Anal. Chem. 31: 426-428.   DOI
19 Nazmi, A. R., T. Reinisch, and H. Hinz. 2006. Ca-binding to Bacillus licheniformis ${\alpha}$-amylase (BLA). J. Arch. Biochem. Biophys. 453: 18-25.   DOI   ScienceOn
20 Ohdan, K., T. Kuriki, H. Kaneko, J. Shimada, T. Takada, Z. Fujimoto, et al. 1999. Characteristics of two forms of ${\alpha}$-amylases and structural implication. Appl. Environ. Microbiol. 65: 4652-4658.
21 Pohlner, J., R. Halter, K. Beyreuther, and T. F. Meyer. 1987. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325: 458-462.   DOI   ScienceOn
22 Rodriguez Sanoja, R., J. Morlon-Guyot, J. Jore, J. Pintado, N. Juge, and J. P. Guyot. 2000. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus ${\alpha}$-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl. Environ. Microbiol. 66: 3350-3356.   DOI   ScienceOn
23 Vihinen, M., T. Peltonen, A. Iitia, I. Suominen, and P. Mantsala 1994. C-Terminal truncations of a thermostable Bacillus stearothermophilus ${\alpha}$-amylase. Protein Eng. 7: 1255-1259.   DOI
24 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
25 Sogaard, M., F. L. Olsen, and B. Svensson, 1991. C-Terminal processing of barley ${\alpha}$-amylase 1 in malt, aleurone protoplasts, and yeast. Proc. Natl. Acad. Sci. USA 88: 8140-8144.   DOI   ScienceOn
26 Takase, K., H. Mizuno, and K. Yamane, 1988. $NH_2$-terminal processing of Bacillus subtilis alpha-amylase. J. Biol. Chem. 263: 11548-11553.
27 Yamane, K., Y. Hirata, T. Furusato, H. Yamazaki, and A. Nakayama. 1984. Changes in the properties and molecular weights of Bacillus subtilis M-type and N-type ${\alpha}$-amylases resulting from a spontaneous deletion. J. Biochem. 96: 1849-1858.