Browse > Article
http://dx.doi.org/10.4014/jmb.1112.12024

Biochemical Characterization of Thermophilic Dextranase from a Thermophilic Bacterium, Thermoanaerobacter pseudethanolicus  

Park, Tae-Soon (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Jeong, Hyung-Jae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ko, Jin-A (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ryu, Young-Bae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Su-Jin (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Do-Man (School of Biological Sciences and Technology and the Research Institute for Catalysis, Chonnam National University)
Kim, Young-Min (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Woo-Song (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.5, 2012 , pp. 637-641 More about this Journal
Abstract
TPDex, a putative dextranase from Thermoanaerobacter pseudethanolicus, was purified as a single 70 kDa band of 7.37 U/mg. Its optimum pH was 5.2 and the enzyme was stable between pH 3.1 and 8.5 at $70^{\circ}C$. A half-life comparison showed that TPDex was stable for 7.4 h at $70^{\circ}C$, whereas Chaetominum dextranase (CEDex), currently used as a dextranase for sugar milling, was stable at $55^{\circ}C$. TPDex showed broad dextranase activity regardless of dextran types, including dextran T2000, 742CB dextran, and alternan. TPDex showed the highest thermostability among the characterized dextranases, and may be a suitable enzyme for use in sugar manufacture without decreased temperature.
Keywords
Thermostable dextranase; Thermoanaereobacter; sugar processing; thermostability;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
2 Britton, H. T. S. and R. A. Robinson. 1931. Universal buffer solutions and dissociation constant of veronal. J. Chem. Soc. 1456-1462.
3 Finnegan, P. M., S. M. Brumbley, M. G. O. Shea, K. M. H. Nevalainen, and P. L. Bergquist. 2004. Isolation and characterization of genes encoding thermoactive and thermostable dextranases from two thermotolerant soil bacteria. Curr. Microbiol. 49: 327-333.   DOI   ScienceOn
4 Finnegan, P. M., S. M. Brumbley, M. G. O. Shea, K. M. H. Nevalainen, and P. L. Bergquist. 2005. Diverse dextranase genes from Paenibacillus species. Arch. Microbiol. 183: 140-147.   DOI   ScienceOn
5 Hattori, A., K. Ishibashi, and S. Minato. 1981. The purification and characterization of the dextranase of Chaetomium gracile. Agric. Biol. Chem. 45: 2409-2416.   DOI
6 Hild, E., S. M. Brubmley, M. G. O. Shea, H. Nevalainen, and Q. L. Bergquist. 2007. A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity. Appl. Microbiol. Biotechnol. 75: 1071-1078.   DOI   ScienceOn
7 Hoster, F., R. Daniel, and G. Gottschalk. 2001. Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. J. Gen. Appl. Microbiol. 47: 187-192.   DOI   ScienceOn
8 Inkerman, P. A. 1990. An appraisal of the use of dextranase, 2411-2327. Proc. XVII Congress Int. Soc. Sugar Cane Technologists, Manila, Philippines.
9 Khalikova E., P. Susi, and T. Korpela. 2005. Microbial dextran-hydrolyzing enzymes: Fundamentals and applications. Microbiol. Mol. Biol. Rev. 69: 306-325.   DOI   ScienceOn
10 Kim, Y. M. and D. Kim. 2010. Characterization of novel thermostable dextranase from Thermotoga lettingae TMO. Appl. Microbiol. Biotechnol. 85: 581-587.   DOI   ScienceOn
11 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
12 Su, D. and J. F. Robyt. 1993. Control of the synthesis of dextan and acceptor-products by Leuconosotc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 471-476.
13 Wynter, C. V. A., C. F. Galea, L. M. Cox, M. W. Dawson, B. K. C. Patel, P. A. Inkerman, and S. Hamilton. 1995. Thermostable dextranases: Screening, detection and preliminary characterization. J. Appl. Bacteriol. 79: 203-212.   DOI   ScienceOn
14 Wynter, C. V. A., B. K. C. Patel, P. Bain, J. De. Jersey, S. Hamilton, and P. A. Inkerman. 1996. A novel thermostable dextranase from a Thermoanaerobacter species cultured from the geothermal waters of the Great Artesian Basin of Australia. FEMS Microbiol. Lett. 140: 271-276.   DOI
15 Wynter, C. V. A., M. Chan, J. De. Jersey, B. K. C. Patel, P. A. Inkerman, and S. Hamilton 1997. Isolation and characterization of a thermostable dextranase. Enzyme. Microb. Technol. 20: 242-247.   DOI   ScienceOn
16 Yamamoto, T., T. Terasawa, Y. M. Kim, A. Kimura, Y, Kitamura, M. Kobayashi, and K. Funane. 2006. Identification of catalytic amino acids of cyclodextran glucanotransferase from Bacillus circulans T-3040. Biosci. Biotechnol. Biochem. 70: 1947-1953.   DOI   ScienceOn
17 Zhaxybayeva, O., K. S. Swithers, P. Lapierre, G. P. Fournier, D. M. Bickhart, R. T. DeBoy, et al. 2009. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc. Natl. Acad. Sci. USA 106: 5865-5870.   DOI   ScienceOn