Browse > Article
http://dx.doi.org/10.4014/jmb.1109.09009

Investigation on the Effects of Three X${\rightarrow}$Histidine Replacements on Thermostability of ${\alpha}$-Amylase from Bacillus amyloliquefaciens  

Haghani, Karimeh (Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University)
Khajeh, Khosro (Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University)
Naderi-Manesh, Hossein (Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University)
Ranjbar, Bijan (Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.5, 2012 , pp. 592-599 More about this Journal
Abstract
Bacillus licheniformis ${\alpha}$-amylase (BLA), a thermophilic counterpart of Bacillus amyloliquefaciens ${\alpha}$-amylase (BAA), is an appropriate model for the design of stabilizing mutations in BAA. BLA has 10 more histidines than BAA. Considering this prominent difference, in the present study, three out of these positions (I34, Q67, and P407; located in the thermostability determinant 1 region and Ca-III binding site of BAA) were replaced with histidine in BAA, using the site-directed mutagenesis technique. The results showed that the thermostability of P407H and Q67H mutants had increased, but no significant changes were observed in their kinetic parameters compared to that of the wild type. I34H replacement resulted in complete loss of enzyme activity. Moreover, fluorescence and circular dichroism data indicated a more rigid structure for the P407H variant compared with that of the wild-type BAA. However, the flexibility of Q67H and I34H mutants increased in comparison with that of wild-type enzyme.
Keywords
Bacillus amyloliquefaciens ${\alpha}$-amylase; histidine; site-directed mutagenesis; thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alikhajeh, J., K. Khajeh, B. Ranjbar, H. Naderi-Manesh, Y. H. Lin, E. Liu, et al. 2010. Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution: Implications for thermal stability. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 66: 121-129.   DOI   ScienceOn
2 Gryczan, T. J. and D. Dubnau. 1978. Construction and properties of chimeric plasmids in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 75: 1428-1432.   DOI   ScienceOn
3 Haghani, K., K. Khajeh, A. H. Salmanian, B. Ranjbar, and S. Bakhtiyari. 2010. Acid-induced formation of molten globule states in the wild type Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase and its three mutated forms: G96A, A183T and G96A/A183T. Protein J. 30: 132-137.
4 Haghani, K., A. H. Salmanian, B. Ranjbar, K. Zakikhan-Alang, and K. Khajeh. 2008. Comparative studies of wild type Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase with three glyphosate-insensitive mutated forms: Activity, stability and structural characterization. Biochim. Biophys. Acta 1784: 1167-1175.   DOI   ScienceOn
5 Heyda, J., P. E. Mason, and P. Jungwirth. 2010. Attractive interactions between side chains of histidine-histidine and histidine-arginine-based cationic dipeptides in water. J. Phys. Chem. 114: 8744-8749.
6 Janecek, S. 1997. Alpha-amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Biol. 67: 67-97.   DOI   ScienceOn
7 Kuriki, T. and T. Imanaka. 1999. The concept of the alpha-amylase family: Structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557-565.   DOI   ScienceOn
8 Laderman, K. A., B. R. Davis, H. C. Krutzsch, M. S. Lewis, Y. V. Griko, P. L. Privalov, and C. B. Anfinsen. 1993. The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 268: 24394-24401.
9 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
10 Arnold, F. H. 2001. Evolutionary Protein Design, pp. 209-212. Academic Press, California.
11 Azad, M. A., J. H. Bae, J. S. Kim, J. K. Lim, K. S. Song, B. S. Shin, and H. R. Kim. 2009. Isolation and characterization of a novel thermostable alpha-amylase from Korean pine seeds. N. Biotechnol. 26: 143-149.   DOI   ScienceOn
12 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
13 Brzozowski, A. M., D. M. Lawson, J. P. Turkenburg, H. Bisgaard-Frantzen, A. Svendsen, T. V. Borchert, et al. 2000. Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes. Biochemistry 39: 9099-9107.   DOI   ScienceOn
14 Caflisch, A. and M. Karplus. 1995. Computational combinatorial chemistry for de novo ligand design: Review and assessment. Perspect. Drug Disc. Design 3: 51-84.   DOI
15 Chakravarty, S. and R. Varadarajan. 2000. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470: 65-69.   DOI   ScienceOn
16 Chi, M. C., Y. H. Chen, T. J. Wu, H. F. Lo, and L. L. Lin. 2010. Engineering of a truncated alpha-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. J. Biosci. Bioeng. 109: 531-538.   DOI   ScienceOn
17 Colombo, G. and K. M. Merz. 1999. Stability and activity of mesophilic subtilisin E and its thermophilic homolog: Insights from molecular dynamics simulations J. Am. Chem. Soc. 121: 6895-6903.   DOI   ScienceOn
18 Conrad, B., V. Hoang, A. Polley, and J. Hofemeister. 1995. Hybrid Bacillus amyloliquefaciens $\times$ Bacillus licheniformis alpha-amylases. Construction, properties and sequence determinants. Eur. J. Biochem. 230: 481-490.
19 Lee, S., Y. Mouri, M. Minoda, H. Oneda, and K. Inouye. 2006. Comparison of the wild-type alpha-amylase and its variant enzymes in Bacillus amyloliquefaciens in activity and thermal stability, and insights into engineering the thermal stability of Bacillus alpha-amylase. J. Biochem. 139: 1007-1015.   DOI   ScienceOn
20 Lazaridis, T., I. Lee, and M. Karplus. 1997. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci. 6: 2589-2605.
21 Lemaster, D. M., J. Tang, D. I. Paredes, and G. Hernandez. 2005. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: Spatial propagation of differential flexibility in rubredoxin hybrids. Proteins 61: 608-616.   DOI   ScienceOn
22 Lim, J. K., H. S. Lee, Y. J. Kim, S. S. Bae, J. H. Jeon, S. G. Kang, and J. H. Lee. 2007. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J. Microbiol. Biotechnol. 17: 1242-1248.
23 Miller, G. L. Jr. 1959. Cardiac arrest. Miss. Doct. 37: 149-151.
24 Nielsen, J. E. and T. V. Borchert. 2000. Protein engineering of bacterial alpha-amylases. Biochim. Biophys. Acta 1543: 253-274.   DOI   ScienceOn
25 Nosoh, Y. and T. Sekiguchi. 1993. Protein stability and stabilization through protein engineering. Biochem. Mol. Biol. Edu. 21: 111-117.
26 Pack, S. P. and Y. J. Yoo. 2004. Protein thermostability: Structure-based difference of amino acid between thermophilic and mesophilic proteins. J. Biotechnol. 111: 269-277.   DOI   ScienceOn
27 Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152.   DOI   ScienceOn
28 Declerck, N., M. Machius, G. Wiegand, R. Huber, and C. Gaillardin. 2000. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J. Mol. Biol. 301: 1041-1057.   DOI   ScienceOn
29 Declerck, N., M. Machius, R. Chambert, G. Wiegand, R. Huber, and C. Gaillardin. 1997. Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: Thermodynamic studies and structural interpretation. Protein Eng. 10: 541-549.   DOI
30 Declerck, N., M. Machius, P. Joyet, G. Wiegand, R. Huber, and C. Gaillardin. 2003. Hyperthermostabilization of Bacillus licheniformis alpha-amylase and modulation of its stability over a 50 degrees C temperature range. Protein Eng. 16: 287-293.   DOI   ScienceOn
31 Dong, X. Y., M. L. Fu, and SunYan. 2008. Refolding of recombinant homodimeric malate dehydrogenase expressed in Escherichia coli as inclusion bodies. Biochem. Eng. J. 38: 341-348.   DOI   ScienceOn
32 Eftink, M. R. and C. A. Ghiron. 1977. Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16: 5546-5551.   DOI   ScienceOn
33 Fisher, C. L. and G. K. Pei. 1997. Modification of a PCR-based site-directed mutagenesis method. Biotechniques 23: 570-574.
34 Fitter, J. 2005. Structural and dynamical features contributing to thermostability in alpha-amylases. Cell. Mol. Life Sci. 62: 1925-1937.   DOI   ScienceOn
35 Fitter, J., R. Herrmann, N. A. Dencher, A. Blume, and T. Hauss. 2001. Activity and stability of a thermostable alpha-amylase compared to its mesophilic homologue: Mechanisms of thermal adaptation. Biochemistry 40: 10723-10731.   DOI   ScienceOn
36 Ghollasi, M., K. Khajeh, H. Naderi-Manesh, and A. Ghasemi. 2010. Engineering of a Bacillus alpha-amylase with improved thermostability and calcium independency. Appl. Biochem. Biotechnol. 162: 444-459.   DOI   ScienceOn
37 Takase, K., T. Matsumoto, H. Mizuno, and K. Yamane. 1992. Site-directed mutagenesis of active site residues in Bacillus subtilis alpha-amylase. Biochim. Biophys. Acta 1120: 281-288.   DOI   ScienceOn
38 Savchenko, A., C. Vieille, S. Kang, and J. G. Zeikus. 2002. Pyrococcus furiosus alpha-amylase is stabilized by calcium and zinc. Biochemistry 41: 6193-6201.   DOI   ScienceOn
39 Suzuki, Y., N. Ito, T. Yuuki, H. Yamagata, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J. Biol. Chem. 264: 18933-18938.
40 Swanson, K. C., N. Kelly, H. Salim, Y. J. Wang, S. Holligan, M. Z. Fan, and B. W. McBride. 2008. Pancreatic mass, cellularity, and alpha-amylase and trypsin activity in feedlot steers fed diets differing in crude protein concentration. J. Anim. Sci. 86: 909-915.   DOI   ScienceOn
41 Tanaka, A. and E. Hoshino. 2003. Secondary calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase obtained from inhibition kinetics. J. Biosci. Bioeng. 96: 262-267.
42 Tomazic, S. J. and A. M. Klibanov. 1988. Why is one Bacillus alpha-amylase more resistant against irreversible thermoinactivation than another? J. Biol. Chem. 263: 3092-3096.
43 van der Maarel, M. J., B. van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 94: 137-155.   DOI   ScienceOn
44 Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J. Biochem. 98: 1147-1156.