Browse > Article
http://dx.doi.org/10.4014/jmb.1109.09007

Biochemical and Molecular Characterization of High Population Density Bacteria Isolated from Sunflower  

Goes, Kelly Campos Guerra Pinheiro De (Biochemistry and Biotechnology Department, State University of Londrina)
Fisher, Maria Luisa De Castro (Biochemistry and Biotechnology Department, State University of Londrina)
Cattelan, Alexandre Jose (Embrapa Soybean, Rodovia Carlos Joao Strass, Distrito de Warta)
Nogueira, Marco Antonio (Embrapa Soybean, Rodovia Carlos Joao Strass, Distrito de Warta)
Carvalho, Claudio Guilherme Portela De (Embrapa Soybean, Rodovia Carlos Joao Strass, Distrito de Warta)
Oliveira, Andre Luiz Martinez De (Biochemistry and Biotechnology Department, State University of Londrina)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.4, 2012 , pp. 437-447 More about this Journal
Abstract
Natural and beneficial associations between plants and bacteria have demonstrated potential commercial application for several agricultural crops. The sunflower has acquired increasing importance in Brazilian agribusiness owing to its agronomic characteristics such as the tolerance to edaphoclimatic variations, resistance to pests and diseases, and adaptation to the implements commonly used for maize and soybean, as well as the versatility of the products and by-products obtained from its cultivation. A study of the cultivable bacteria associated with two sunflower cultivars, using classical microbiological methods, successfully obtained isolates from different plant tissues (roots, stems, florets, and rhizosphere). Out of 57 plant-growth-promoting isolates obtained, 45 were identified at the genus level and phylogenetically positioned based on 16S rRNA gene sequencing: 42 Bacillus (B. subtilis, B. cereus, B. thuringiensis, B. pumilus, B. megaterium, and Bacillus sp.) and 3 Methylobacterium komagatae. Random amplified polymorphic DNA (RAPD) analysis showed a broad diversity among the Bacillus isolates, which clustered into 2 groups with 75% similarity and 13 subgroups with 85% similarity, suggesting that the genetic distance correlated with the source of isolation. The isolates were also analyzed for certain growth-promoting activities. Auxin synthesis was widely distributed among the isolates, with values ranging from 93.34 to 1653.37 ${\mu}M$ auxin per ${\mu}g$ of protein. The phosphate solubilization index ranged from 1.25 to 3.89, and siderophore index varied from 1.15 to 5.25. From a total of 57 isolates, 3 showed an ability to biologically fix atmospheric nitrogen, and 7 showed antagonism against the pathogen Sclerotinia sclerotiorum. The results of biochemical characterization allowed identification of potential candidates for the development of biofertilizers targeted to the sunflower crop.
Keywords
Endophytic bacteria; plant growth-promoting bacteria; Bacillus; Methylobacterium; 16S rRNA gene;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Akopianz, N., N. O. Bukanov, T. U. Westblom, S. Kresovich, and D. E. Berg. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20: 5137-5142.   DOI   ScienceOn
2 Araujo, F. F., A. A. Henning, and M. Hungria. 2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol. 21: 1639-1645.   DOI   ScienceOn
3 Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotech. Adv. 16: 729-770.   DOI   ScienceOn
4 Beneduzi, A., D. Peres, L. K. Vargas, M. H. Bodanese-Zanettini, and L. M. P. Passaglia. 2008. Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl. Soil Ecol. 39: 311-320.   DOI   ScienceOn
5 Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11-18.   DOI   ScienceOn
6 Boddey, R. M. and J. Dobereiner. 1995. Nitrogen fixation associated with grasses and cereals: Recent results and perspectives for the future research. Fertil. Res. 42: 241-250.   DOI
7 Dobereiner, J., V. O. Andrade, and V. L. D. Baldani. 1999. Protocolos para preparo de meios de cultura da Embrapa Agrobiologia. Embrapa Agrobiologia Documentos 110, Seropedica.
8 Fages, J. and J. F. Arsac. 1991. Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant Soil 137: 87-90.   DOI   ScienceOn
9 Forchetti, G., O. Masciarelli, S. Alemano, D. Alvarez, and G. Abdala. 2007. Endophytic bacteria in sunflower (Helianthus annuus L.): Isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl. Microbiol. Biotechnol. 76: 1145-1152.   DOI   ScienceOn
10 Furnkranz, M., H. Muller, and G. Berg. 2009. Characterization of plant growth promoting bacteria from crops in Bolivia. J. Plant Dis. Protect. 116: 149-155.   DOI
11 Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117.   DOI   ScienceOn
12 Graner, G., P. Persson, J. Meijer, and S. Alstrom. 2003. A study on microbial diversity in different cultivars of Brassica napus in relation to its wild pathogen, Verticillium longisporum. FEMS Microbiol. Lett. 224: 269-276.   DOI   ScienceOn
13 Ikeda, S., T. Okubo, M. Anda, H. Nakashita, M. Yasuda, S. Sato, et al. 2010. Community- and genome-based views of plant-associated bacteria: Plant-bacterial interactions in soybeans and rice. Plant Cell Physiol. 51: 1398-1410.   DOI   ScienceOn
14 Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
15 Hallmann, J., A. Quadt-Hallmann, W. F. Mahaffey, and J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895-914.   DOI   ScienceOn
16 Huey, B. and J. Hall. 1989. Hypervariable DNA fingerprinting in Escherichia coli: Minisatelite probe from bacteriophage M13. J. Bacteriol. 171: 2528-2532.   DOI
17 Jayashree, S., P. Vadivukkarasi, K. Anand, Y. Kato, and S. Seshadri. 2011. Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization. Arch. Microbiol. 193: 543-552.   DOI   ScienceOn
18 Kuklinsky-Sobral, J., W. L. Araujo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251.   DOI   ScienceOn
19 Lakshminarayana, K. 1993. Influence of Azotobacter on nitrogen nutrition of plants and crop productivity. Proc. lndian Nat. Sci. Acad. B59: 303-308.
20 Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, and H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI   ScienceOn
21 Lucy, M., E. Reed, and B. R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86: 1-25.   DOI
22 Mathre, D. E., R. J. Cook, and N. W. Callan. 1999. From discovery to use: Traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis. 83: 972-983.   DOI
23 Lugtemberg, B. and F. Kamilova. 2009. Plant growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556.   DOI   ScienceOn
24 Mangin, I., D. Corroler, A. Reinhardt, and M. Gueguen. 1999. Genetic diversity among dairy lactococcal strains investigated by polymerase chain reaction with three arbitrary primers. J. Appl. Microbiol. 86: 514-520.   DOI   ScienceOn
25 Masirevic, S. and T. J. Gulya. 1992. Sclerotinia and Phomopsis - two devastating sunflower pathogens. Field Crop Res. 30: 271-300.   DOI   ScienceOn
26 Mavingui, P., G. Laguerre, O. Berge, and T. Heulin. 1992. Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl. Environ. Microbiol. 58: 1894-1903.
27 Nautiyal, C. S., S. Bhadauria, P. Kumar, H. Lal, R. Mondal, and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182: 291-296.   DOI   ScienceOn
28 Piceno, Y. M., P. A. Noble, and C. R. Lovell. 1999. Spatial and temporal assessment of diazitroph assemblage composition in vegetated salt marsh sediments using denaturing gradient gel eletrophoresis analysis. Microb. Ecol. 38: 157-167.   DOI   ScienceOn
29 Rodrigues, E. P., L. S. Rodrigues, A. L. M. Oliveira, V. L. D. Baldani, K. R. S. Teixeira, S. Urquiaga, and V. M. Reis. 2008. Azospirillum amazonense inoculation: Effects on growth, yield and $N_2$ fixation of rice. Plant Soil 302: 249-261.   DOI   ScienceOn
30 Roesch, L. F. W., P. D. Quadros, F. A. O. Camargo, and E. W. Triplett. 2007. Screening of diazotrophic bacteria Azospirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J. Microbiol. Biotechnol. 23: 1377-1383.   DOI   ScienceOn
31 Ronquist, F. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.   DOI   ScienceOn
32 Rosch, C. and H. Bothe. 2005. Improved assessment of denitrifying, $N_2$-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl. Environ. Microbiol. 71: 2026-2035.   DOI   ScienceOn
33 Rosenblueth, M. and E. Martinez Romero. 2004. Rhizobium etli maize populations and their competitiveness for root colonization. Arch. Microbiol. 181: 337-344.   DOI   ScienceOn
34 Ryder, M. H., Y. Zhinong, T. E. Terrace, R. D. Rovira, T. Wenhua, R. L. Carrell, et al. 1999. Use of strains of Bacillus isolated in China to suppress take-all and Rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 31: 19-29.
35 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New York.
36 Schauer, S. and U. Kutschera. 2008. Methylotrophic bacteria on the surfaces of field-grown sunflower plants: A biogeographic perspective. Theor. Biosci. 127: 23-29.   DOI
37 Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.   DOI   ScienceOn
38 Vogt, G. A., A. A. Balbinot Junior, and A. M. Souza. 2010. Divergencia genetica entre cultivares de girassol no planalto norte de Santa Catarina. Scientia Agraria 11: 307-315.   DOI
39 Surette, M. A., A. V. Sturz, R. R. Lada, and J. Nowak. 2003. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253: 381-390.   DOI   ScienceOn
40 Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586.   DOI   ScienceOn
41 Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naïve Bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267.   DOI   ScienceOn
42 Xie, G. H., Z. Cui, J. Yu, J. Yan, W. Hai, and Y. Steinberger. 2006. Identification of nif genes in $N_2$-fixing bacterial strains isolated from rice fields along the Yangtze River Plain. J. Basic Microbiol. 46: 56-63.   DOI   ScienceOn