Browse > Article
http://dx.doi.org/10.4014/jmb.1107.07066

Kinetics of a Cloned Special Ginsenosidase Hydrolyzing 3-O-Glucoside of Multi-Protopanaxadiol-Type Ginsenosides, Named Ginsenosidase Type III  

Jin, Xue-Feng (College of Biotechnology, Dalian Polytechnic University)
Yu, Hong-Shan (College of Biotechnology, Dalian Polytechnic University)
Wang, Dong-Ming (College of Biotechnology, Dalian Polytechnic University)
Liu, Ting-Qiang (College of Biotechnology, Dalian Polytechnic University)
Liu, Chun-Ying (College of Biotechnology, Dalian Polytechnic University)
An, Dong-Shan (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Im, Wan-Taek (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Kim, Song-Gun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
Jin, Feng-Xie (College of Biotechnology, Dalian Polytechnic University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.3, 2012 , pp. 343-351 More about this Journal
Abstract
In this paper, the kinetics of a cloned special glucosidase, named ginsenosidase type III hydrolyzing 3-O-glucoside of multi-protopanaxadiol (PPD)-type ginsenosides, were investigated. The gene (bgpA) encoding this enzyme was cloned from a Terrabacter ginsenosidimutans strain and then expressed in E. coli cells. Ginsenosidase type III was able to hydrolyze 3-O-glucoside of multi-PPD-type ginsenosides. For instance, it was able to hydrolyze the 3-O-${\beta}$-D-(1${\rightarrow}$2)-glucopyranosyl of Rb1 to gypenoside XVII, and then to further hydrolyze the 3-O-${\beta}$-D-glucopyranosyl of gypenoside XVII to gypenoside LXXV. Similarly, the enzyme could hydrolyze the glucopyranosyls linked to the 3-O-position of Rb2, Rc, Rd, Rb3, and Rg3. With a larger enzyme reaction $K_m$ value, there was a slower enzyme reaction speed; and the larger the enzyme reaction $V_{max}$ value, the faster the enzyme reaction speed was. The $K_m$ values from small to large were 3.85 mM for Rc, 4.08 mM for Rb1, 8.85 mM for Rb3, 9.09 mM for Rb2, 9.70 mM for Rg3(S), 11.4 mM for Rd and 12.9 mM for F2; and $V_{max}$ value from large to small was 23.2 mM/h for Rc, 16.6 mM/h for Rb1, 14.6 mM/h for Rb3, 14.3 mM/h for Rb2, 1.81mM/h for Rg3(S), 1.40 mM/h for Rd, and 0.41 mM/h for F2. According to the $V_{max}$ and $K_m$ values of the ginsenosidase type III, the hydrolysis speed of these substrates by the enzyme was Rc>Rb1>Rb3>Rb2>Rg3(S)>Rd>F2 in order.
Keywords
Ginsenosidase type III; biotransformation; enzyme kinetic; PPD-type ginsenosides;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kim, J. H., S. Y. Cho, J. H. Lee, S. M. Jeong, I. S. Yoon, B. H. Lee, et al. 2007. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res. 1136: 190-199.
2 Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666.   DOI
3 Liu, C. Y., J. G. Song, P. F. Li, H. S. Yu, and F. X. Jin. 2011. Ginsenoside contents in three different ginseng. J. Dalian Polytechnic Univ. 30: 79-82.
4 Liu, Z. Q., X. Y. Luo, G. Z. Liu, and Y. P. Chen. 2003. In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes. J. Agric. Food Chem. 51: 2555-2558.   DOI   ScienceOn
5 Luan, H. W., X. Liu, X. H. Qi, Y. Hu, D. C. Hao, Y. Cui, and L. Yang. 2006. Purification and characterization of a novel stable ginsenoside Rb1-hydrolyzing ${\beta}$-D-glucosidase from China white jade snail. Process Biochem. 41: 1974-1980.   DOI   ScienceOn
6 Popovich, D. G. and D. D. Kitts. 2002. Structure-function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Arch. Biochem. Biophys. 406: 1-8.   DOI   ScienceOn
7 Stavro, P. M., M. N. Woo, T. F. Heim, L. A. Leiter, and V. Vuksan. 2005. North American ginseng exerts a neutral effect on blood pressure in individuals with hypertension. Hypertension 46: 406-411.   DOI   ScienceOn
8 Su, J. H., J. H. Xu, W. Y. Lu, and G. Q. Lin. 2006. Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolated Fusarium proliferatum ECU2042. J. Mol. Catal. B Enzym. 38: 113-118.   DOI   ScienceOn
9 Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31: 1065-1071.   DOI   ScienceOn
10 Wang, J. Y. 2002. Biochemistry, pp. 356-361. Higher Education Press, Beijing, China.
11 Weber, K., J. R. Pringle, and M. Osborn. 1972. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 26: 3-27.
12 Yu, H. S., C. Z. Zhang, M. C. Lu, F. Sun, Y. Y. Fu, and F. X. Jin. 2007. Purification and characterization of ginsenosidase hydrolyzing multi-glycosides of protopanaxadiol ginsenoside, ginsenoside type I. Chem. Pharm. Bull. 55: 231-235.   DOI   ScienceOn
13 Yu, H. S., Q. M. Liu, C. Z. Zhang, M. C. Lu, Y. Y. Fu, W. T. Im, et al. 2009. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44: 772-775.   DOI   ScienceOn
14 Zhang, J., H. Guo, Y. Tian, P. Liu, N. Li, J. Zhou, and D. Guo. 2007. Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products. Phytochemistry 68: 2523-2530.   DOI   ScienceOn
15 Zheng, H., Y. J. Jeong, J. M. Song, and G. E. Ji. 2011. Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitis-like skin lesions induced by oxazolone in hairless mice. Int. Immunopharmacol. 11: 511-518.   DOI   ScienceOn
16 Gao, J., X. S. Zhao, H. B. Liu, Y. Y. Fan, H. R. Cheng, F. Liang, et al. 2010. A highly selective ginsenoside Rb1-hydrolyzing ${\beta}$-D-glucosidase from Cladosporium fulvum. Process Biochem. 45: 897-903.   DOI   ScienceOn
17 An, D. S., C. H. Cui, H. G. Lee, L. Wang, S. C. Kim, S. T. Lee, et al. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. ${\beta}$-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microb. 76: 5827-5836.   DOI   ScienceOn
18 Chae, S. W., K. A. Kang, W. Y. Chang, M. J. Kim, S. J. Lee, Y. S. Lee, et al. 2009. Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. J. Agric. Food Chem. 57: 5777-5782.   DOI   ScienceOn
19 Chen, G., M. Yang, Z. Lu, J. Zhang, H. Huang, Y. Liang, et al. 2007. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. J. Nat. Prod. 70: 1203-1206.   DOI   ScienceOn
20 Hasegawa, H., J. H. Sung, S. Matsumiya, and M. Uchiyama. 1996. Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med. 62: 453-457.   DOI   ScienceOn
21 Jin, F. X. 2009. Biotransformation of Natural Products, pp. 74-113. Chemical Industry Press, Beijing, China.