Browse > Article
http://dx.doi.org/10.4014/jmb.1109.09062

Characterization and Fibrinolytic Activity of Acetobacter sp. FP1 Isolated from Fermented Pine Needle Extract  

Park, Jae-Young (Department of Biotechnology, Chosun University)
Yoon, Seo-Hyeon (Department of Biotechnology, Chosun University)
Kim, Seong-Sim (Department of Biotechnology, Chosun University)
Lee, Beom-Gi (Department of Biotechnology, Chosun University)
Cheong, Hyeong-Sook (Department of Biotechnology, Chosun University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.2, 2012 , pp. 215-219 More about this Journal
Abstract
The strain KCTC 11629BP, isolated from spontaneously fermented pine needle extract (FPE), showed fibrinolysis activity. The isolated strain was analyzed in physiological and biochemical experiments. Based on 16S rDNA sequencing and phylogenic tree analysis, the strain was identified to be a part of the genus Acetobacter, with Acetobacter senegalensis and Acetobacter tropicalis as the closest phylogenetic neighbors. Based on genotypic and phenotypic results, it was proposed that bacterial strain KCTC 11629BP represents a species of the genus Acetobacter. The strain was thusly named Acetobacter sp. FP1. In conclusion, Acetobacter sp. FP1 isolated from FPE possesses fibrinolytic activity.
Keywords
Acetobacter; fermented pine needle extract; 16S rDNA; fibrinolytic activity;
Citations & Related Records
연도 인용수 순위
1 Astrup, T. and S. Mullertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 346-351.   DOI   ScienceOn
2 Bergey, D. H. and J. G. Holt. 1994. Bergey's Manual of Determinative Bacteriology, 9th Ed., pp. 71-84. Williams & Wilkins, Baltimore, USA.
3 Camu, N., T. De Winter, K. Verbrugghe, I. Cleenwerck, P. Vandamme, S. J. Takrama, et al. 2007. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environ. Microbiol. 73: 1809-1824.   DOI   ScienceOn
4 Carr, M. E. and J. Hermans. 1978. Size and density of fibrin fibers from turbidity. Macromolecules 11: 46-50.   DOI   ScienceOn
5 Mo, A.-Y., B. R. Kwon, S. Kamala-Kannan, K.-J. Lee, B.-T. Oh, D.-H. Kim, et al. 2010. Isolation and characterization of Bacillus polyfermenticus isolated from meju, Korean soybean fermentation starter. World J. Microbiol. Biotechnol. 26: 1099- 1105.   DOI   ScienceOn
6 Kong, Z., Z. Liu, and B. Ding. 1995. Study on the antimutagenic effect of pine needle extract. Mutat. Res. 347: 101-104.   DOI   ScienceOn
7 Cleenwerck, I., K. Vandemeulebroecke, D. Janssens, and J. Swings. 2002. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int. J. Syst. Evol. Microbiol. 52: 1551-1558.   DOI   ScienceOn
8 Cleenwerck, I., N. Camu, K. Engelbeen, T. De Winter, K. Vandemeulebroecke, P. De Vos, and L. De Vuyst. 2007. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int. J. Syst. Evol. Microbiol. 57: 1647-1652.   DOI   ScienceOn
9 Entani, E., S. Ohmori, H. Masai, and K. I. Suzuki. 1985. Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J. Gen. Appl. Microbiol. 31: 475-490.   DOI
10 Franke, I. H., M. Fegan, C. Hayward, L. Graham, E. Stackebrandt, and L. I. Sly. 1999. Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int. J. Syst. Evol. Microbiol. 49: 1681-1693.
11 Gullo, M., C. Caggia, D. V. Luciana, and P. Giudici. 2006. Characterization of acetic acid bacteria in "traditional balsamic vinegar". Int. J. Food Microbiol. 106: 209-212.   DOI   ScienceOn
12 Jo, H. D., G. H. Kwon, J. Y. Park, J. H. Cha, Y. S. Song, and J. H. Kim. 2011. Cloning and overexpression of aprE3-17 encoding the major fibrinolytic protease of Bacillus licheniformis CH 3-17. Biotechnol. Bioprocess Eng. 16: 352-359.   DOI   ScienceOn
13 Kim, Y., J. Y. Cho, J. H. Kuk, J. H. Moon, J. I. Cho, Y. C. Kim, and K. H. Park. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr. Microbiol. 48: 312-317.   DOI   ScienceOn
14 Kim, Y. S. and D. H. Shin. 2005. Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts. Food Microbiol. 22: 37-45.   DOI   ScienceOn
15 Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI   ScienceOn
16 Park, G. Y., D. Paudyal, Y. M. Park, C. S. Lee, I. D. Hwang, G. Tripathi, and H. S. Cheong. 2008. Effects of pine needle extracts on plasma cholesterol, fibrinolysis and gastrointestinal motility. Biotechnol. Bioprocess Eng. 13: 262-268.   DOI   ScienceOn
17 Lisdiyanti, P., H. Kawasaki, T. Seki, Y. Yamada, T. Uchimura, and K. Komagata. 2000. Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J. Gen. Appl. Microbiol. 46: 147-165.   DOI   ScienceOn
18 Lu, F., L. Sun, Z. Lu, X. Bie, Y. Fang, and S. Liu. 2007. Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes. Curr. Microbiol. 54: 435-439.   DOI   ScienceOn
19 Ndoye, B., S. Lebecque, R. Dubois-Dauphin, L. Tounkara, A. T. Guiro, C. Kere, et al. 2006. Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub- Saharan Africa and destined to industrial vinegar. Enzyme Microb. Technol. 39: 916-923.   DOI   ScienceOn
20 Park, G. Y., D. Paudyal, I. D. Hwang, G. Tripathi, Y. K. Yang, and H. S. Cheong. 2008. Production of fermented needle extracts from red pine and their functional characterization. Biotechnol. Bioprocess Eng. 13: 256-261.   DOI   ScienceOn
21 Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340.   DOI
22 Smith, S. A., N. J. Mutch, D. Baskar, P. Rohloff, R. Docampo, and J. H. Morrissey. 2006. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl. Acad. Sci. USA 103: 903-908.   DOI   ScienceOn
23 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.   DOI
24 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI   ScienceOn
25 Toit, W. J. D. and I. S. Pretorius. 2002. The occurrence, control and esoteric effect of acetic acid bacteria in winemaking. Ann. Microbiol. 52: 155-179.
26 Urakami, T., J. Tamaoka, K.-C. Suzuki, and K. Komagata. 1989. Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int. J. Syst. Bacteriol. 39: 50-55.   DOI
27 Wu, B., L. Wu, L. Ruan, M. Ge, and D. Chen. 2009. Screening of endophytic fungi with antithrombotic activity and identification of a bioactive metabolite from the endophytic fungal strain CPCC 480097. Curr. Microbiol. 58: 522-527.   DOI   ScienceOn
28 Yamada, Y., M. Nunoda, T. Ishikawa, and Y. Tahara. 1981. The cellular fatty acid composition in acetic acid bacteria. J. Gen. Appl. Microbiol. 27: 405-417.   DOI
29 Yen, G. C., P. D. Duh, D. W Huang, C. L. Hsu, and T. Y.C. Fu. 2008. Protective effect of pine (Pinus morrisonicola Hay.) needle on LDL oxidation and its anti-inflammatory action by modulation of iNOS and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 46: 175-185.   DOI   ScienceOn