Browse > Article
http://dx.doi.org/10.4014/jmb.1208.08028

Identification of the ${\beta}$-Glucosidase Gene from Bifidobacterium animalis subsp. lactis and Its Expression in B. bifidum BGN4  

Youn, So Youn (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
Park, Myeong Soo (Department of Hotel Culinary Arts, Yeonsung University)
Ji, Geun Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.12, 2012 , pp. 1714-1723 More about this Journal
Abstract
${\beta}$-Glucosidase is necessary for the bioconversion of glycosidic phytochemicals in food. Two Bifidobacterium strains (Bifidobacterium animalis subsp. lactis SH5 and B. animalis subsp. lactis RD68) with relatively high ${\beta}$-glucosidase activities were selected among 46 lactic acid bacteria. A ${\beta}$-glucosidase gene (bbg572) from B. lactis was shotgun cloned, fully sequenced, and analyzed for its transcription start site, structural gene, and deduced transcriptional terminator. The structural gene of bbg572 was 1,383 bp. Based on amino sequence similarities, bbg572 was assigned to family 1 of the glycosyl hydrolases. To overexpress bbg572 in Bifidobacterium, several bifidobacteria expression vectors were constructed by combining several promoters and a terminator sequence from different bifidobacteria. The maximum activity of recombinant Bbg572 was achieved when it was expressed under its own promoter and terminator. Its enzyme activity increased 31-fold compared with those of its parental strains. The optimal pH for Bbg572 was pH 6.0. Bbg572 was stable at $37-40^{\circ}C$. It hydrolyzed isoflavones, quercetins, and disaccharides with various ${\beta}$-glucoside linkages. Bbg572 also converted the ginsenosides Rb1 and Rb2. These results suggest that this new ${\beta}$-glucosidase-positive Bifidobacterium transformant can be utilized for the production of specific aglycone products.
Keywords
${\beta}$-Glucosidase; Bifidobacterium; promoter; terminator;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Nunoura, N., K. Ohdan, T. Yano, K. Yamamoto, and H. Kumagai. 1996. Purification and characterization of beta-Dglucosidase (beta-D-fucosidase) from Bifidobacterium breve clb acclimated to cellobiose. Biosci. Biotechnol. Biochem. 60: 188-193.   DOI   ScienceOn
2 Nunoura, N., K. Ohdan, K. Yamamoto, and H. Kumagai. 1997. Expression of the ${\beta}$-d-glucosidase I gene in Bifidobacterium breve 203 during acclimation to cellobiose. J. Ferment. Bioeng. 83: 309-314.
3 Park, M. S., B. Kwon, J. J. Shim. C. S. Huh, and G. E. Ji. 2008. Heterologous expression of cholesterol oxidase in Bifidobacterium longum under the control of 16S rRNA gene promoter of bifidobacteria. Biotechnol. Lett. 30: 165-172.
4 Park, M. S., J. M. Seo, and J. Y. Kim. 2005. Heterologous gene expression and secretion in Bifidobacterium longum. Lait 85: 1-8.   DOI   ScienceOn
5 Park, M. S., H. W. Moon, and G. E. Ji. 2003. Molecular characterization of plasmid from Bifidobacterium longum. J. Microbiol. Biotechnol. 13: 457-462.
6 Sambrook, J., E. F. Frietsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
7 Setchell, K. D. R., N. M. Brown, L. Zimmer-Nechemias, W. T. Brashear, B. E. Wolfe, A. S. Kirschner, and J. E. Heubi. 2002. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 76: 447-453.
8 Sneath, P. H. A., N. S. Mair, M. E. Sharpe, and J. G. Holt. 1986. Bergey's Manual of Systematic Bacteriology. The Williams & Wilkins Co.
9 Ventura, M., F. Turroni, A. Zomer, E. Foroni, V. Giubellini, F. Bottacini, et al. 2009. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet. 5: e1000785.   DOI   ScienceOn
10 Wang, Y., J. Y. Kim, M. S. Park, and G. E. Ji. 2012. Novel Bifidobacterium promoters selected through microarray analysis lead to constitutive high level expression. J. Microbiol. 50: 638-643.   DOI   ScienceOn
11 Xu, X., K. S. Harris, H. J. Wang, P. A. Murphy, and S. Hendrich. 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 125: 2307-2315.
12 Hendrich, S. 2002. Bioavailability of isoflavones. J. Chromatogr. B 777: 203-210.   DOI   ScienceOn
13 Jensen, P. R. and K. Hammer. 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 82-87.
14 Kenji, S., T. Takashi, K. Hidehiko, and T. Tatsurokuro. 1986. Isolation and characterization of two ${\beta}$-D-glucosidases from Bifidobacterium breve 203. Agric. Biol. Chem. 50: 2287-2293.   DOI
15 Ji, G. E., S. K. Lee, and I. H. Kim. 1994. Improved selective medium for isolation and enumeration of Bifidobacterium sp. Korean J. Food Sci. Technol. 26: 526-531.
16 Joint FAO/WHO Expert Consultation. 2001. Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.
17 Kawakami, Y., W. Tsurugasaki, S. Nakamura, and K. Osada. 2005. Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J. Nutr. Biochem. 16: 205-212.   DOI   ScienceOn
18 Kim, J. Y., Y. Wang, M. S. Park, and G. E. Ji. 2010. Improvement of transformation efficiency through in vitro methylation and SacII site mutation of plasmid vector in Bifidobacterium longum MG1. J. Microbiol. Biotechnol. 20: 1022-1026.   DOI   ScienceOn
19 Kim, J. Y., Y. Wang, S. J. Park, M. S. Park, and G. E. Ji. 2012. Cloning of expression of ${\beta}$-glucosidases from Bifidobacterium lactis AD011. Food Sci. Biotechnol. 21: 731-738.   DOI
20 Le, T. M. and N. T. Vu. 2010. Cloning of a ${\beta}$-glucosidase gene (BGL1) from traditional starter yeast Saccharomycopsis fibuligera BMQ 908 and expression in Pichia pastoris. Int. J. Biol. Life Sci. 6: 83-87.
21 Lei, V., W. K. Amoa-Awua, and L. Brimer. 1999. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int. J. Food Microbiol. 53: 169-184.   DOI   ScienceOn
22 Nunoura, N., K. Ohdan, K. Tanaka, H. Tamaki, T. Yano, M. Inui, et al. 1996. Cloning and nucleotide sequence of the beta-Dglucosidase gene from Bifidobacterium breve clb, and expression of beta-D-glucosidase activity in Escherichia coli. Biosci. Biotechnol. Biochem. 60: 2011-2018.   DOI   ScienceOn
23 Mahlen, S. D. and J. E. Clarridge. 2009. Site and clinical significance of Alloscardovia omnicolens and Bifidobacterium species isolated in the clinical laboratory. J. Clin. Microbiol. 47: 3289-3293.   DOI   ScienceOn
24 Marotti, I., A. Bonetti, B. Biavati, P. Catizone, and G. Dinelli. 2007. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by Bifidobacterium species from human intestinal origin. J. Agric. Food Chem. 55: 3913-3919.   DOI   ScienceOn
25 McCracken, A., M. S. Turner, P. Giffard, L. M. Hafner, and P. Timms. 2000. Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch. Microbiol. 173: 383-389.   DOI   ScienceOn
26 Aiba, H., A. Hanamura, and H. Yamano. 1991. Transcriptional terminator is a positive regulatory element in the expression of the Escherichia coli crp gene. J. Biol. Chem. 266: 1721-1727.
27 Bhatia, Y., S. Mishra, and V. S. Bisaria. 2002. Microbial ${\beta}$- glucosidases: Cloning, properties and applications. Crit. Rev. Biotechnol. 22: 375-407.   DOI   ScienceOn
28 Brown, J. P. 1998. Hydrolysis of glycosides and esters. In: Role of the Gut Flora in Toxicity and Cancer. Academic Press, SanDiego.
29 Chi, H. and G. E. Ji. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771.   DOI   ScienceOn
30 Choi, Y. O., J. M. Seo, and G. E. Ji. 2008. Modulatory activity of CpG oligonucleotides from Bifidobacterium longum on immune cells. Food Sci. Biotechnol. 17: 1131-1395.
31 Gekas, V. and M. H. Lopez-Levia. 1985. Hydrolysis of lactose. Process Biochem. 20: 2-12.
32 Collado-Vides, J., B. Magasanik, and J. D. Gralla. 1991. Control site location and transcriptional regulation in Escherichia coli. Microbiol. Rev. 55: 371-394.
33 Esen, A. 1993. ${\beta}$-Glucosidase, pp. 1-13. In: ${\beta}$-Glucosidase: Biochemistry and Molecular Biology. American Chemical Society, Washington DC.
34 Estrem, S. T., T. Gaal, W. Ross, and R. L. Gourse. 1998. Identification of an UP element consensus sequence for bacterial promoters. Proc. Natl. Acad. Sci. USA 95: 9761-9766.   DOI   ScienceOn
35 Ghosh, P., N. B. Pamment, and W. R. B. Martin. 1982. Simultaneous saccharification and fermentation of cellulose: Effect of beta-D-glucosidase activity and ethanol inhibition of cellulases. Enzyme Microb. Technol. 4: 425-430.   DOI   ScienceOn
36 Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580.   DOI
37 Hawkswor, G., B. S. Drasar, and M. J. Hill. 1971. Intestinal bacteria and hydrolysis of glycosidic bonds. J. Med. Microbiol. 4: 451-459.   DOI
38 Helmann, J. D. 1995. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: Evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res. 23: 2351-2360.   DOI   ScienceOn