Browse > Article
http://dx.doi.org/10.4014/jmb.1112.12033

Net Methane Oxidation Performance of Anaerobic Sewage Sludge  

Yi, Taewoo (Department of Environmental Science and Engineering, Ewha Womans University)
Kim, Tae Gwan (Department of Environmental Science and Engineering, Ewha Womans University)
Lee, Eun-Hee (Department of Environmental Science and Engineering, Ewha Womans University)
Lee, Jung-Hee (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.10, 2012 , pp. 1452-1456 More about this Journal
Abstract
The anaerobic oxidation of methane (AOM) in anaerobic sewage sludge was characterized. The net methane oxidation was observed in samples amended with methane plus sulfate or with methane alone, whereas methane formation was observed in the samples without methane, indicating that methane oxidation and formation occurred simultaneously. The ratio of the net methane oxidation rate to $H_2S$ formation was 100:1, suggesting that the AOM was not closely associated with sulfate reduction in the anaerobic sludge. The net AOM was positively associated with the methane concentration and sludge dilution ratio. However, the rate of AOM was negatively correlated with organic substrate (acetate) concentration. Therefore, the production and oxidation of methane could be controlled by environmental conditions and dissolved organic compounds in the bulk solution.
Keywords
Methane; anaerobic oxidation; sulfate reduction; anaerobic sludge; acetate;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Knittel, K., T. Losekann, A. Boetius, R. Kort, and R. Amann. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71: 467-479.   DOI   ScienceOn
2 Martens, C. S. and R. A. Berner. 1974. Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185: 1167-1169.   DOI   ScienceOn
3 Meulepas, R. J. W., C. G. Jagersma, J. Gieteling, C. J. N. Buisman, A. J. M. Stams, and P. N. L. Lens. 2009. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol. Bioeng. 104: 458-470.   DOI   ScienceOn
4 Meulepas, R. J. W., C. G. Jagersma, Y. Zhang, M. Petrillo, H. Cai, C. J. N. Buisman, A. J. M. Stams, and P. N. L. Lens. 2010. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge. FEMS Microbiol. Ecol. 72: 261-271.   DOI   ScienceOn
5 Meyerdierks, A., M. Kube, I. Kostadinov, H. Teeling, F. O. Glockner, R. Reinhardt, and R. Amann. 2010. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12: 422-439.   DOI   ScienceOn
6 Nauhaus, K., A. Boetius, M. Krüger, and F. Widdel. 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4: 296-305.   DOI   ScienceOn
7 Nauhaus, K., T. Treude, A. Boetius, and M. Kruger. 2005. Environmental regulation of the anaerobic oxidation of methane: A comparison of ANME-I- and ANME-II-communities. Environ. Microbiol. 7: 98-106.   DOI   ScienceOn
8 Orcutt, B., V. Samarkin, A. Boetius, and S. Joye. 2009. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ. Microbiol. 10: 1108-1117.
9 Schilov, A. E., E. M. Koldasheva, S. V. Kovalenko, N. P. Akentieva, S. D. Varfolomeyev, S. V. Kalyuzhnyi, and V. I. Sklyar. 1999. Methanogenesis is reversible: The formation of acetate in methane carboxylation by bacteria of methanogenic biocenosis. Dokl. RAN 367: 557-559.
10 Shima, S. and R. K. Thauer. 2005. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr. Opin. Microbiol. 8: 643-648.   DOI   ScienceOn
11 Thauer, R. K. and S. Shima. 2008. Methane as fuel for anaerobic microorganisms. Ann. NY Acad. Sci. 1125: 158-170.   DOI   ScienceOn
12 Treude, T., V. Orphan, K. Knittel, A. Gieseke, C. H. House, and A. Boetius. 2007. Consumption of methane and $CO_2$ by methanotrophic microbial mats from gas seeps of the anoxic Black sea. Appl. Environ. Microbiol. 73: 2271-2283.   DOI   ScienceOn
13 Zehnder, A. J. B. and T. D. Brock. 1979. Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137: 420-432.
14 Zehnder, A. J. B. and T. D. Brock. 1980. Anaerobic methane oxidation: Occurrence and ecology. Appl. Environ. Microbiol. 39: 194-204.
15 Barnes, R. O. and E. D. Goldberg. 1976. Methane production and consumption in anoxic marine sediments. Geology 4: 297-300.   DOI
16 Hallam, S. J., N. Putnam, C. M. Preston, J. C. Detter, D. Rokhsar, P. M. Richardson, and E. F. DeLong. 2004. Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science 305: 1457-1462.   DOI   ScienceOn
17 Caldwell, S. L., J. R. Laidler, E. A. Brewer, J. O. Eberly, S. C. Sandborgh, and F. S. Colwell. 2008. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ. Sci. Technol. 42: 6791-6799.   DOI   ScienceOn
18 Deutzmann, J. S. and B. Schink. 2011. Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl. Environ. Microbiol. 77: 4429-4436.   DOI   ScienceOn
19 Girguis, P. R., V. J. Orphan, S. J. Hallam, and E. F. DeLong. 2003. Growth and methane oxidation rates of anaerobic methanotrophic Archaea in a continuous-flow bioreactor. Appl. Environ. Microbiol. 69: 5472-5482.   DOI   ScienceOn
20 Harder, J. 1997. Anaerobic methane oxidation by bacteria employing $^{14}C$-methane uncontaminated with $^{14}C$-carbon monoxide. Mar. Geol. 137: 13-23.   DOI   ScienceOn
21 Knittel, K. and A. Boetius. 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annu. Rev. Microbiol. 63: 311-334.   DOI   ScienceOn