Browse > Article
http://dx.doi.org/10.4014/jmb.1105.05047

Bioremediation of Crude Oil by White Rot Fungi Polyporus sp. S133  

Kristanti, Risky Ayu (Department of Research, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi)
Hadibarata, Tony (Institute of Environmental and Water Research Management, Universiti Teknologi Malaysia)
Toyama, Tadashi (Department of Research, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi)
Tanaka, Yasuhiro (Department of Research, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi)
Mori, Kazuhiro (Department of Research, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.9, 2011 , pp. 995-1000 More about this Journal
Abstract
The bioremediation potential of crude oil by Polyporus sp. S133 pre-grown in wood meal was investigated in two separate experiment trials; liquid medium and soil. The effect of three nutrients (glucose, polypeptone, and wood meal), oxygen flow, and some absorbent on the efficiency of the process was also evaluated. Degradation of crude oil in soil was significantly increased with an addition of oxygen flow and some absorbent (kapok and pulp). The highest degradation rate of crude oil was 93% in the soil with an addition of 10% kapok. The present study clearly demonstrates that, if suitably developed, Polyporus sp. S133 could be used to remediate soil contaminated with crude oil.
Keywords
Bioremediation; crude oil; nutrients effect; Polyporus sp. S133; white rot fungi;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Valentin, L., T. A. Lu-Chau, C. Lopez, G. Feijoo, M. T. Moreira, and J. M. Lerna. 2007. Biodegradation of dibenzothiophene, fluoranthene, pyrene, and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Proc. Biochem. 42: 641-648.   DOI   ScienceOn
2 Van Hamme, J. D. and O. P. Ward. 2000. Development of a method for the application of solid-phase microextraction to monitor the biodegradation of volatile hydrocarbons during growth on crude oil. J. Ind. Microbiol. Biotechnol. 28: 252-260.
3 Ostberg, T. L., A. P. Jonsson, and U. S. Lundstrom. 2006. Accelerated biodegradation of n-alkanes in aqueous solution by the addition of fermented whey. Int. Biodeter. Biodegrad. 57: 190-194.   DOI   ScienceOn
4 Ostberg, T. L., A. P. Jonsson, and U. S. Lundstrom. 2007. Enhanced degradation of n-hexadecane in diesel fuel contaminated soil by the addition of fermented whey. Soil Sed. Cont. 16: 221-232.
5 Pometto, A. I., C. S. Oulman, A. A. Dispirito, K. E. Johnson, and S. Baranow. 1998. Potential of agricultural by-products in the bioremediation of fuel spills. J. Ind. Microbiol. Biotechnol. 20: 369-372.   DOI   ScienceOn
6 Radwan, S. S., D. Al-Mailem, I. El-Nemr, and S. Salamah. 2000. Enhanced remediation of hydrocarbon contaminated desert soil fertilized with organic carbons. Int. Biodeter. Biodegrad. 46: 129-132.   DOI   ScienceOn
7 Rahman, K. S. M., J. T. Rahman, P. Lakshmanaperumalsamy, and I. M. Banat. 2002. Towards efficient crude oil degradation by a mixed bacterial consortium. Biores. Technol. 85: 257-261.   DOI   ScienceOn
8 Ramos, J. L., E. Duque, and M. I. Ramos-Gonzalez. 1991. Survival in soils of an herbicide-resistant Pseudomonas putida strain bearing a recombinant TOL plasmid. Appl. Environ. Microbiol. 57: 260-266.
9 Klemm, D., B. Philip, T. Heinz, U. Heinz, and W. Wagenknecht. 1998. Comprehensive Cellulose Chemistry, Vol. 1, pp. 9-25. Wiley-VCH, Weinheim.
10 Krooneman, J., E. B. A. Wieringa, E. R. B. Moore, J. Gerritse, R. A. Prins, and J. C. Gottschal. 1996. Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via pathway not involving (chloro) catechols. Appl. Environ. Microbiol. 62: 2427-2434.
11 Lal, B. and S. Khanna. 1996. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J. Appl. Bacteriol. 81: 355-362.
12 Leonardi, V., V. Sasek, M. Petruccioli, A. D'Annibale, P. Erbanova, and T. Cajthaml. 2007. Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int. Biodeterior. Biodegrad. 60: 165-170.   DOI   ScienceOn
13 Lim, T.T. and X. Huang. 2007. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic-oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 66: 955-963.   DOI   ScienceOn
14 Masters, G. M. 1998. Introduction to Environmental Engineering and Science, pp. 249-254. 2nd Ed. Prentice-Hall, London.
15 Liu, C. and R. Bai. 2006. Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. J. Membr. Sci. 284: 313-322.   DOI   ScienceOn
16 Liu, R., W. Ma, C. Y. Jia, L. Wang, and H. Y. Li. 2007. Effect of pH on biosorption of boron onto cotton cellulose. Desalination 207: 257-267.   DOI
17 Martens, R. and F. Zadrazil. 1998. Screening of white rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol. 43: 97-103.   DOI   ScienceOn
18 Mishra, S., B. Lal, J. Jyot, S. Rajan, S. Khanna, and R. C. Kuhad. 1999. Field study: In situ bioremediation of oily sludge contaminated land using "OILZAPPER", pp. 174-183. Haz. Ind. Wastes 31st Mid-Atlantic Ind. Haz. Waste Conf. Technomic Publishing Co., Inc. Lancaster.
19 Mittal, A. and P. Singh. 2009. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian J. Exp. Biol. 47: 760-765.
20 Nakatsu, C. H. and C. Wyndham. 1993. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Appl. Environ. Microbiol. 59: 3625-3633.
21 Fanta, G. F., R. C. Burr, and W. M. William. 1986. Oil absorbency of graft copolymers from softwood pulp. Polym. Sci. Technol. 33: 107-114.
22 Hadibarata, T. and S. Tachibana. 2010. Characterization of phenanthrene degradation by strain Polyporus sp. S133. J. Environ. Sci. 22: 142-149   DOI   ScienceOn
23 Field, J. A., E. DeJong, G. F. Costa, and J. A. M. DeBont. 1992. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58: 2219-2226.
24 Johnston, H. W., G. G. Briggs, and M. Alexander. 1972. Metabolism of 3-chlorobenzoic acid by a Pseudomonas. Soil Biol. Biochem. 4: 187-190.   DOI   ScienceOn
25 Hadibarata, T., S. Tachibana, and K. Itoh. 2009. Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J. Hazard. Mater. 164: 911-917.   DOI
26 Harayama, S. 1997. Polycyclic aromatic hydrocarbon bioremediation design. Curr. Opin. Biotechnol. 8: 268-273.   DOI   ScienceOn
27 Kingston, P. F. 2002. Long-term environmental impact of oil spills. Spill Sci. Tech. Bull. 7: 53-61.   DOI   ScienceOn
28 Barr, D. P. and S. D. Aust. 1994. Mechanisms white rot fungi use to degrade pollutants. Environ. Sci.Tech. 28: 78A-87A.   DOI
29 Eriksson, M. G. and B. Dalhammar. 1995. Aerobic degradation of hydrocarbon mixture in natural contaminated potting soil in indigenous microorganisms at $20^{\circ}C$ and $6^{\circ}C$. Appl. Microbiol. Biotech. 51: 532-535.
30 Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from petroleum contaminated soil. Environ. Int. 26: 413-416.   DOI   ScienceOn
31 Bossert, I. and R. Bartha. 1984. The fate of petroleum in the soil ecosystems, pp. 435-473. In R. M. Atlas (ed.). Petroleum Microbiology. Macmillan, New York.
32 Boulding, J. R. 1996. EPA Environmental Engineering Sourcebook. Ann Arbor Press, Chelsea, Michigan.
33 Dao, T. H., D. B. Marx, T. L. Lavy, and J. Dragun. 1982. Effect, and statistical evaluation, of soil sterilization on analine and diuron adsorption isotherms. Soil Sci. Soc. Am. J. 46: 963-969.   DOI
34 Dibble, J. T. and R. Bartha. 1979. The effect of environmental parameters on the biodegradation of oily sludge. Appl. Environ. Microbiol. 37: 729-739.
35 Enggen, T. and A. Majcherzykb. 1998. Removal of polycyclic aromatic hydrocarbon (PAH) in contaminated soil by white rot fungi Pleurotus ostreotus. Int. Biodeter. Biodegrad. 41: 111-117.   DOI   ScienceOn
36 Alexander, M. 1999. Biodegradation and Bioremediation, pp. 325-353. 2nd Ed. Academic Press, New York.
37 Sakalle, K. and S. Rajkumar. 2009. Isolation of crude oil-degrading marine bacteria and assessment for biosurfactant production. Int. J. Microbiol. 7: 2.
38 Verma, S., S. Bhargava, and V. Pruthi. 2006. Oily sludge degradation by bacteria from Ankleshwar, India. Int. Biodeter. Biodegrad. 57: 207-213.   DOI   ScienceOn
39 Wolf, D. C., T. H. Dao, H. D. Scott, and T. L. Lavy. 1989. Influence of sterilization methods on selected microbiological, physical, and chemical properties. J. Environ. Qual. 18: 39-44.
40 Zhang, G., Y. Wu, X. Qian, and Q. Meng. 2005. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J. Zhejiang Univ. Sci. 6B:725-730.   DOI
41 Salonius, P. O., J. B. Johnson, and F. E. Chase. 1967. A comparison of autoclaved and gamma-irradiated soils as media for microbial colonization experiments. Plant Soil 27: 239-248.   DOI   ScienceOn
42 Swindoll, C. M., C. M. Aelion, and F. K. Pfaender. 1988. Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Appl. Environ. Microbiol. 54: 212-217.