Browse > Article
http://dx.doi.org/10.4014/jmb.1104.04015

Antidiabetic Activities of Extract from Malva verticillata Seed via the Activation of AMP-Activated Protein Kinase  

Jeong, Yong-Tae (Department of Biotechnology, Daegu University)
Song, Chi-Hyun (Department of Biotechnology, Daegu University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.9, 2011 , pp. 921-929 More about this Journal
Abstract
Stimulation of AMP-activated protein kinase (AMPK) signaling followed by increase of glucose uptake in L6 myotubes were studied with organic solvent extract of Malva verticillata (MV) seeds. Ethanol extract of M. verticillata seeds (MVE) significantly increased the phosphorylation level of AMPK, acetyl-CoA carboxylase (ACC), and glucose uptake in L6 myotube cells. The MVE was fractionated with n-hexane (MVE-H), chloroform (MVE-C), ethylacetate (MVE-E), n-butanol (MVE-B), and water (MVE-W). MVE-H (150 ${\mu}g$/ml) showed the highest phosphorylating activity and increased glucose uptake by 2.3-fold. Oral administration of MVE-H (40 mg/kg) for 4 weeks to type 2 diabetic (db/db) mice reduced non-fasting and fasting blood glucose levels by 17.1% and 23.3%, respectively. Phosphorylation levels of AMPK and ACC in the soleus muscle and liver tissue of db/db mice were significantly increased by the administration of MVE-H. MVE-H was further fractionated using preparative HPLC to identify the AMPK-activating compounds. The NMR and GC-MS analyses revealed that ${\beta}$-sitosterol was a major effective compound in MVE-H. Phosphorylation levels of AMPK and ACC, and glucose uptake were significantly increased by the treatment of MVE-S (${\beta}$-sitosterol) isolated from M. verticillata to L6 cells, and these effects were attenuated by an AMPK inhibitor (Compound C) pretreatment. These results, taken together, demonstrate that increased glucose uptake in L6 myotubes by MVE-H treatment is mainly accomplished through the activation of AMPK. Our finding suggests that the extract isolated from M. verticillata seed would be beneficial for the treatment of metabolic disease including type 2 diabetes and hyperlipidemia.
Keywords
Malva verticillata; glucose uptake; AMPK; L6 myotube; ${\beta}$-sitosterol; db/db mice;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Natural Products Research Institute Seoul National University. 1998. Medicinal Plants in the Republic of Korea. World Health Organization Regional Office for the Western Pacific, Manila.
2 Ruderman, N. and M. Prentki. 2004. AMP kinase and malonyl-CoA: Targets for therapy of the metabolic syndrome. Nat. Rev. Drug Discov. 3: 340-351.   DOI   ScienceOn
3 Ruderman, N. and G. Shulman. 2005. The metabolic syndrome, pp. 1149-1166. In L. DeGroot and J. Jameson (eds.). Endocrinology. 5th Ed. Elsevier, Philadelphia.
4 Somwar, R., G. Sweeney, T. Ramlal, and A. Klip. 1998. Stimulation of glucose and amino acid transport and activation of the insulin signaling pathways by insulin lispro in L6 skeletal muscle cells. Clin. Ther. 20: 125-140.   DOI   ScienceOn
5 Tsarong, T. J. 1994. Tibetan Medicinal Plants. Tibetan Medical Publications, West Bengal.
6 Viollet, B., M. Foretz, B. Guigas, S. Horman, R. Dentin, L. Bertrand, et al. 2006. Activation of AMP-activated protein kinase in the liver: A new strategy for the management of metabolic hepatic disorders. J. Physiol. 574: 41-53.   DOI   ScienceOn
7 Zenimaru, Y., S. Takahashi, M. Takahahi, K. Yamada, T. Iwasaki, T. Iwasaki, et al. 2008. Glucose deprivation accelerates VLDL receptor-mediated TG-rich lipoprotein uptake by AMPK activation in skeletal muscle cells. Biochem. Biophys. Res. Commun. 368: 716-722.   DOI   ScienceOn
8 Zhou, G., R. Myer, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, et al. 2001. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167-1174.   DOI
9 Zierath, J. R., L. He, A. Guma, E. Odegoard-Wahlstrom, A. Klip, and H. Wallberg-Henriksson. 1996. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39: 1180-1189.   DOI   ScienceOn
10 Kim, E. J., S. N. Jung, K. H. Son, S. R. Kim, T. Y. Ha, M. G. Park, et al. 2007. Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase. Mol. Pharmacol. 72: 62-72.   DOI   ScienceOn
11 Kim, S. H., S. H. Hyun, and S. Y. Choung. 2006. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J. Ethnopharmacol. 104: 119-123.   DOI   ScienceOn
12 Lee, W. J., E. H. Koh, J. C. Won, M. S. Kim, J. Y. Park, and K. U. Lee. 2005. Obesity: The role of hypothalamic AMP-activated protein kinase in body weight regulation. Int. J. Biochem. Cell B 37: 2254-2259.   DOI   ScienceOn
13 Mu, J., J. T. Jr. Brozinick, O. Valladares, M. Bucan, and M. J. Birnbaum. 2001. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7: 1085-1094.   DOI   ScienceOn
14 Zimmet, P., K. G. Alberti, and J. Shaw. 2001. Global and societal implications of the diabetes epidemic. Nature 414: 782-787.   DOI   ScienceOn
15 Musi, N. and L. J. Goodyear. 2003. AMP-activated protein kinase and muscle glucose uptake. Acta Physiol. Scand. 178: 337-345.   DOI   ScienceOn
16 Jamaluddin, F., M. N. Lajis, and S. Mohamed. 1995. Hypoglycemic effect of stigmast-4-en-3-one, from Parkia speciosa empty pods. Food Chem. 54: 9-13.   DOI   ScienceOn
17 Jung, K. H., S. C. Kim, M. Y. Han, and H. J. Kim. 2007. The effect of Ginkgo biloba extract (GB) on glucose uptake in L6 rat skeletal muscle cells. Korea J. Herbol. 22: 155-161.
18 Bailey, C. J. and C. Day. 1989. Traditional plant medicines as treatments for diabetes. Diabetes Care 12: 553-564.   DOI   ScienceOn
19 Budavari, S. 1989. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 11th Ed. Merck and Co., Inc. Rahway, NJ.
20 Buhl, E. S., N. Jessen, R. Pold, T. Ledet, A. Flyvbjerg, and S. B. Pedersen. 2002. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes 51: 2199-2206.   DOI   ScienceOn
21 Chen, H., R. Feng, Y. Guo, L. Sun, and J. Jiang. 2001. Hypoglycemic effects of aqueous extract of Rhizoma polygonati odorati in mice and rats. J. Ethnopharmacol. 74: 225-229.   DOI   ScienceOn
22 Cool, B., B. Zinker, W. Chiou, L. Kifle, N. Cao, M. Perham, et al. 2006. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3: 403-416.   DOI   ScienceOn
23 Garvey, W. T., L. Maianu, J. H. Zhu, G. Brechtel-Hook, P. Wallace, and A. D. Baron. 1998. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J. Clin. Invest. 101: 2377-2386.   DOI   ScienceOn
24 Goad, L. J. 1991. Phytosterols, pp. 349-434. In B. V. Charlwood and D. V. Banhorp (eds.). Methods in Plant Biochemistry. Vol. 7. Academic Press, London.
25 Goad, L. J. and T. Akihisa. 1997. Analysis of Sterols. Blackie Academic & Professional, London.
26 Gonda, R., M. Tomoda, N. Shimizu, and M. Kanari. 1990. Characterization of an acidic polysaccharide from the seeds of Malva verticillata stimulating the phagocytic activity of cells of the RES. Plana Med. 56: 73-76.   DOI
27 Habib, N. S., K. A. Ismail, A. A. Tobary, and T. Abdel Azeim. 2000. Antilipidemic agents, Part IV: Synthesis and antilipidemic testing of some heterocyclic derivatives of hexadecyl and cyclohexyl hemisuccinate esters. Die Pharmazie 55: 495-499.
28 Jung, K. H., E. Y. Ha, M. J. Kim, Y. K. Uhm, H. K. Kim, S. J. Hong, et al. 2006. Ganoderma lucidum extract stimulates glucose uptake in L6 rat skeletal muscle cells. Acta Biochim. Pol. 53: 597-601.
29 Jung, U. J., N. I. Baek, H. G. Chung, M. H. Bang, T. S. Jeong, K. T. Lee, et al. 2008. Effect of the ethanol extract of the roots of Brassica rapa on glucose and lipid metabolism in C57BL/ KsJ-db/db mice. Clin. Nutr. 27: 158-167.   DOI   ScienceOn
30 Kemp, B. E., D. Stapleton, D. J. Campbell, Z. P. Chen, S. Murthy, and M. Walter. 2003. AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans. 31: 162-168.   DOI
31 Merrill, G. F., E. J. Kurth, D. G. Hardie, and W. W. Winder. 1997. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273: E1107-E1112.
32 DeFronzo, R. A., E. Jacot, E. Jequier, E. Maeder, J. Wahren, and J. P. Felber. 1981. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimety and hepatic and femoral venous catheterization. Diabetes 30: 1000-1007.   DOI
33 Duncan, D. M. 1957. Multiple-range tests for correlated and heteroscedastic means. Biometrics 13: 164-170.   DOI   ScienceOn
34 Fridewald, W. T., R. I. Levy, and D. S. Fedreicson. 1979. Estimation of concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499-502.
35 Fryer, L. G., F. Foufelle, K. Barnes, S. A. Baldwin, A. Woods, and D. Carling. 2002. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. Biochem. J. 363: 167-174.   DOI   ScienceOn
36 Fuller, J. H., M. J. Shipley, G. G. Rose, R. J. Jarrett, and H. Keen. 1980. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet 1: 1373-1376.
37 Hardie, D. G. 2007. AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 47: 185-210.   DOI   ScienceOn
38 Hardie, D. G., J. W. Scott, D. A. Pan, and E. R. Hudson. 2003. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546: 113-120.   DOI   ScienceOn
39 Hayashi, T., M. F. Hirshman, N. Fujii, S. A. Habinowski, L. A. Witters, and L. J. Goodyear. 2000. Metabolic stress and altered glucose transport: Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49: 527-531.   DOI   ScienceOn
40 Hurley, R. L., K. A. Anderson, J. M. Franzone, B. E. Kemp, A. R. Means, and L. A. Witters. 2005. The $Ca^{2+}$/calmodulindependent protein kinase kinase are AMP-activated protein kinase kinase. J. Biol. Chem. 280: 29060-29066.   DOI