Browse > Article
http://dx.doi.org/10.4014/jmb.1104.04048

Optimization of Rhamnetin Production in Escherichia coli  

Sung, Su-Hyun (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University)
Kim, Bong-Gyu (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University)
Ahn, Joong-Hoon (Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.8, 2011 , pp. 854-857 More about this Journal
Abstract
POMT7, which is an O-methyltransferase from poplar, transfers a methyl group to several flavonoids that contain a 7-hydroxyl group. POMT7 has been shown to have a higher affinity toward quercetin, and the reaction product rhamnetin has been shown to inhibit the formation of beta-amyloid. Thus, rhamnetin holds great promise for use in therapeutic applications; however, methods for mass production of this compound are not currently available. In this study, quercetin was biotransformed into rhamnetin using Escherichia coli expressing POMT7, with the goal of developing an approach for mass production of rhamnetin. In order to maximize the production of rhamnetin, POMT7 was subcloned into four different E. coli expression vectors, each of which was maintained in E. coli with a different copy number, and the best expression vector was selected. In addition, the S-adenosylmethionine biosynthesis pathway was engineered for optimal cofactor production. Through the combination of optimized POMT7 expression and cofactor production, the production of rhamnetin was increased up to 111 mg/l, which is approximately 2-fold higher compared with the E. coli strain containing only POMT7.
Keywords
S-Adenosylmethionine; S-adenosylmethionine synthetase; biotransformation; O-methyltranferase; rhamnetin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Fowler, Z. L., W. W. Gikandi, and M. A. G. Koffas. 2009. Increased malonyl coenzyme A biosynthesis by using the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microbiol. 75: 5831-5839.   DOI   ScienceOn
2 Forkmann, G. and W. Heller. 1999. Biosynthesis of flavonoids, pp. 713-748. In D. Barton, K. Nakanishi, and O. Meth-Cohn (eds.). Comprehensive Natural Products Chemistry. Elsevier Science Ltd., Oxford.
3 Fukai, T., A. Marumo, K. Kaitou, T. Kanda, S. Terada, and T. Nomura. 2002. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci. 71: 1449-1463.   DOI   ScienceOn
4 Kim, H., B. S. Park, K. G. Lee, C. Y. Choi, S. S. Jang, Y. H. Kim, and S. E. Lee. 2005. Effects of naturally occurring compounds on fibril formation and oxidative stress of betaamyloid. J. Agric. Food Chem. 53: 8537-8541.   DOI   ScienceOn
5 Castrillo, J. L. and L. Carrasco. 1987. Action of 3-methylquercetin on poliovirus RNA replication. J. Virol. 61: 3319-3321.
6 Chemler, J. A., Z. L. Fowler, K. P. McHugh, and M. A. G. Koffas. 2010. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 12: 96-104.   DOI   ScienceOn
7 Straathof, A. J. J., S. Panke, and A. Schmid. 2002. The production of fine chemicals by biotransformation. Curr. Opin. Biotechnol. 13: 548-556.   DOI   ScienceOn
8 Harle, J. and A. Bechthold. 2009. The power of glycosyltransferases to generate bioactive natural compounds. Methods Enzymol. 458: 309-333.
9 Kim, B. G., B.-R. Jung, Y. Lee, H.-G. Hur, Y. Lim, and J.-H. Ahn. 2006. Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli. J. Agric. Food Chem. 54: 823-828.   DOI   ScienceOn
10 Kim, B.-G., S. H. Sung, Y. Chong, Y. Lim, and J.-H. Ahn. 2010. Plant flavonoid O-methyltransferases: Substrate specificity and application. J. Plant Biol. 53: 321-329.   DOI
11 Lam, K. C., R. K. Ibrahimm, B. Behdad, and S. Dayanandan. 2007. Structure, function, and evolution of plant Omethyltransferases. Genome 50: 1001-1013.   DOI   ScienceOn
12 Pollard, D. J. and J. M. Woodley. 2007. Biocatalysis for pharmaceutical intermediates: The future is now. Trends Biotechnol. 25: 63-73.
13 Kim, B. G., H. Kim, H.-G. Hur, Y. Lim, and J. H. Ahn. 2006. Regioselectivity of 7-O-methyltransferase of poplar to flavones. J. Biotech. 138: 155-162.
14 Kim, B. G., Y. Lee, H.-G. Hur, Y. Lim, and J.-H. Ahn. 2006. Flavonoid 3'-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry 67: 387-394.   DOI   ScienceOn
15 van Belion, J. B., W. A. Duetz, A. Schmid, and B. Witholt. 2003. Practical issues in the application of oxygenase. Trends Biotechnol. 21: 170-177.   DOI   ScienceOn
16 Zhao, X. Q., B. Gust, and L. Heide. 2010. S-Adenosylmethionine (SAM) and antibiotic biosynthesis: Effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Arch. Microbiol. 192: 289-297.   DOI   ScienceOn
17 Markham, G. D., J. DeParasis, and J. Gatmaitan. 1984. The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. J. Biol. Chem. 259: 14505- 14507.
18 Noh, K. H., J. W. Son, H. J. Kim, and D. K. Oh. 2009. Ginsenoside compound K production from ginseng root extract by a thermostable $\beta$-glycosidase from Sulfolobus solfataricus. Biosci. Biotechnol. Biochem. 73: 316-321.   DOI   ScienceOn