Browse > Article
http://dx.doi.org/10.4014/jmb.1011.11026

Enhancing the Anaerobic Digestion of Corn Stalks Using Composite Microbial Pretreatment  

Yuan, Xufeng (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University)
Li, Peipei (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University)
Wang, Hui (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University)
Wang, Xiaofen (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University)
Cheng, Xu (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University)
Cui, Zongjun (Center of Biomass Engineering / College of Agronomy and Biotechnology, China Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.7, 2011 , pp. 746-752 More about this Journal
Abstract
A composite microbial system (XDC-2) was used to pretreat and hydrolyze corn stalk to enhance anaerobic digestion. The results of pretreatment indicated that sCOD concentrations of hydrolysate were highest (8,233 mg/l) at the fifth day. XDC-2 efficiently degraded the corn stalk by nearly 45%, decreasing the cellulose content by 22.7% and the hemicellulose content by 74.1%. Total levels of volatile products peaked on the fifth day. The six major compounds present were ethanol (0.29 g/l), acetic acid (0.55 g/l), 1,2-ethanediol (0.49 g/l), propionic acid (0.15 g/l), butyric acid (0.22 g/l), and glycerine (2.48 g/l). The results of anaerobic digestion showed that corn stalks treated by XDC-2 produced 68.3% more total biogas and 87.9% more total methane than untreated controls. The technical digestion time for the treated corn stalks was 35.7% shorter than without treatment. The composite microbial system pretreatment could be a cost-effective and environmentally friendly microbial method for efficient biological conversion of corn stalk into bioenergy.
Keywords
Composite microbial system; biogas; pretreatment; hydrolysate; anaerobic digestion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Guo, P., W. B. Zhu, H. Wang, Y. H. Lu, D. Zheng, and Z. J. Cui. 2010. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J. Microbiol. Biotechnol. 20: 254-264.
2 Guo, P., X. F. Wang, W. B. Zhu, H. Y. Yang, X. Cheng, and Z. J. Cui. 2008. Degradation of corn stalk by the composite microbial system of MC1. J. Environ. Sci. 20: 109-114.   DOI   ScienceOn
3 Haruta, S., Z. Cui, Z. Huang, M. Li, M. Ishii, and Y. Igarashi. 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59: 529-534.   DOI   ScienceOn
4 Haruta, S., M. Kondo, K. Nakamura, C. Chaunjit, H. Aiba, M. Ishii and Y. Igarashi. 2004. Succession of a microbial community during stable operation of a semi-continuous garbagedecomposing system. J. Biosci. Bioeng. 98: 20-27.   DOI
5 Lynd, L. R., H. E. Grethlein, and R. H. Wolkin. 1989. Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl. Environ. Microbiol. 55: 3131-3139.
6 Cassini, S. T., M. C. E. Andrade, T. A. Abreu, R. Keller, and R. F. Goncalves. 2005. Alkaline and acid hydrolytic processes in aerobic and anaerobic sludges: Effect on total EPS and fractions. 4th International Symposium on Anaerobic Digestion of Solid Waste, Copenhagen.
7 Cui, Z. J., M. D. Li, Z. Piao, Z. Y. Huang, M. Ishii, and Y. Igarashi. 2002. Selection of a composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function [In Chinese]. Huan Jing Ke Xue 23: 36-39.
8 Zhang, B., P. He, F. Lu, and L. H. Zhu. 2008. Enhancement of anaerobic biodegradability of flower stem wastes with vegetable wastes by co-hydrolysis. J. Environ. Sci. 20: 297-303.   DOI   ScienceOn
9 Desvaux, M., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66: 2461-2470.   DOI   ScienceOn
10 Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Appl. Environ. Microbiol. 67: 3837-3845.   DOI   ScienceOn
11 Yang, H., H. Wu, X. Wang, Z. Cui, and Y. Li. 2010. Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases. Bioresour. Technol. 102: 3546-3550.
12 Sandberg, M. and B. K. Ahring. 1992. Anaerobic treatment of fish-meal process wastewater in a UASB reactor at high pH. Appl. Microbiol. Biotechnol. 36: 800-804.
13 Singh, S. P. and P. Prerna. 2009. Review of recent advances in anaerobic packed-bed biogas reactors. Renew. Sustain. Energ. Rev. 13: 1569-1575.   DOI   ScienceOn
14 Ward, A. J., P. J. Hobbs, P. J. Holliman, and D. L. Jones. 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99: 7928-7940.   DOI   ScienceOn
15 Wong, K. K. Y., L. U. L. Tan, and J. N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganisms: Functions and applications. Microbiol. Mol. Biol. Rev. 52: 305-317.
16 Yang, H. Y., X. Wang, L. J. Gao, S. Haruta, M. Ishii, and Y. Igarashi. 2008. Development of an enrichment culture growing at low temperature used for ensiling rice straw. J. Microbiol. Biotechnol. 18: 711-717.
17 Yu, Y., B. Park, and S. Hwang. 2004. Co-digestion of lignocellulosics with glucose using thermophic acidogens. Biochem. Eng. J. 18: 225-229.   DOI   ScienceOn
18 Zhang, R. H. and Z. Q. Zhang. 1999. Digestion of rice straw with an anaerobic phased solids digester system. Bioresour. Technol. 68: 235-245.   DOI   ScienceOn
19 Zheng, M., X. Li, L. Li, X. Yang, and Y. He. 2009. Enhancing anaerobic digestion of corn stover through wet state NaOH pretreatment. Bioresour. Technol. 100: 5140-5145.   DOI   ScienceOn
20 Zhu, H., F. Qu, and L. H. Zhu. 1993. Isolation of genomic DNAs from plant, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5278-5280.
21 Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577.   DOI   ScienceOn
22 Muyzer, G., E. C. D. Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
23 Malherbe, S. and T. E. Cloete. 2002. Lignocellulose biodegradation: Fundamentals and applications. Rev. Environ. Sci. Biotechnol. 1: 105-144.   DOI   ScienceOn
24 MOA. 2006. China Agricultural Census. China Agriculture Press, Beijing, China.
25 Mosey, F. E. and X. A. Fernandes. 1989. Patterns of hydrogen in biogas from the anaerobic-digestion of milk-sugars. Water Sci. Technol. 21: 187-196.
26 Palmowski, L. M. and J. A. Müller. 2000. Influence of the size reduction of organic waste on their anaerobic digestion. Water Sci. Technol. 41: 155-162.
27 Pavlostathis, S. G., T. L. Miller, and M. J. Wolin. 1988. Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Appl. Environ. Microbiol. 54: 2655-2659.
28 Sanchez, C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185-194.   DOI   ScienceOn
29 Binod, P., R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, and S. Nagalakshmi. 2010. Bioethanol production from rice straw: An overview. Bioresour. Technol. 101: 4767-4774.   DOI   ScienceOn
30 AHAP (American Public Health Association/American Water Works Association/Water Environment Federation). 1998. Standard Methods for the Examination of Water and Wastewater. 20th Ed. Washington DC, USA.