Browse > Article
http://dx.doi.org/10.4014/jmb.1010.10052

Endophytic Fungi as a Source of Biofuel Precursors  

Santos-Fo, Florisvaldo C. (Departamento de Quimica, Universidade Federal de Sao Carlos)
Fill, Taicia Pacheco (Departamento de Quimica, Universidade Federal de Sao Carlos)
Nakamura, Joanita (Centro de Caracterizacao e Desenvolvimento de Materiais, Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos)
Monteiro, Marcos Roberto (Centro de Caracterizacao e Desenvolvimento de Materiais, Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos)
Rodrigues-Fo, Edson (Departamento de Quimica, Universidade Federal de Sao Carlos)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.7, 2011 , pp. 728-733 More about this Journal
Abstract
Endophytic fungi, isolated from a number of different species of tropical plants, were investigated for lipid biodiesel precursor production. The extracts produced from liquid cultures of these fungi were subjected to acidcatalyzed transesterification reactions with methanol producing methyl esters and then analyzed through chromatographic (GC-FID) and spectrometric techniques (MS, NMR $^1H$). The European Standard Method, EN 14103, was used for the quantification of methyl esters extracted from the fungi of the species and genera studied. Xylariaceous fungi exhibited the highest concentrations of methyl esters (91%), and hence may be a promising source for biofuel.
Keywords
Biodiesel; fatty acid methyl esters; endophytic fungi;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Fill, T. P., R. M. G. dos Santos, A. Barison, E. Rodrigues Filho, and A. Q. L. Souza. 2009. Co-production of bisphenylpropanoid amides and meroterpenes by an endophytic penicillium brasilianum found in the root bark of Melia azedarach. Z. Naturforsch C 64: 355-360.
2 Fill, T. P., B. F. Silva, and E. Rodrigues-Filho. 2010. Biosynthesis of phenylpropanoid amides by an endophytic Penicillium brasilianum found in root bark of Melia azedarach. J. Microbiol. Biotechnol. 20: 622-629.
3 Formo, M. 1954. Ester reactions of fatty materials. J. Am. Oil Chem. Soc. 31: 548-559.   DOI   ScienceOn
4 Schuchardt, U., R. Sercheli, and R. M. Vargas. 1998. Transesterification of vegetable oils: A review. J. Braz. Chem. Soc. 9: 199-210.
5 Fakas, S., S. Papanikolaou, A. Batsos, M. Galiotou-Panayotou, A. Mallouchos, and G. Aggelis. 2009. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33: 573-580.   DOI   ScienceOn
6 Amaral, L. S. and E. Rodrigues-Filho. 2010. Two novel eremophilane sesquiterpenes from an endophytic Xylariaceous fungus isolated from leaves of Cupressus lusitanica. J. Braz. Chem. Soc. 21: 1446-1450.   DOI   ScienceOn
7 Chen, J., H. Ferris, K. M. Scow, and K. J. Grahan. 2001. Fatty acid composition and dynamics of selected fungal-feeding nematodes and fungi. Comp. Biochem. Physiol. Biochem. Molec. Biol. 130: 135-144.   DOI   ScienceOn
8 Chisti, Y. 2007. Biodiesel from microalgae. Biotech. Adv. 25: 294-306.   DOI   ScienceOn
9 Durrett, T. P., C. Benning, and J. Ohlrogge. 2008. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54: 593-607.   DOI   ScienceOn
10 Proenca Barros, F. A. and E. Rodrigues-Filho. 2005. Four spiroquinazoline alkaloids from Eupenicillium sp. isolated as an endophytic fungus from leaves of Murraya paniculata (Rutaceae). Biochem. Syst. Ecol. 33: 257-268.   DOI   ScienceOn
11 Souza, A. D. L., E. Rodrigues-Filho, A. Q. L. Souza, J. O. Pereira, A. K. Calgarotto, V. Maso, et al. 2008. Koninginins, phospholipase A2 inhibitors from endophytic fungus Trichoderma koningii. Toxicon 51: 240-250.   DOI   ScienceOn
12 Knothe, G. 2006. Analyzing biodiesel: Standards and other methods. J. Am. Oil Chem. Soc. 83: 823-833.   DOI   ScienceOn
13 Marques, M. V., F. F. Naciuk, A. M. S. Mello, N. M. Seibel, and L. A. M. Fontoura. 2010. Determinacao do teor de esteres graxos em biodiesel metilico de soja por cromatografia gasosa utilizando oleato de etila como padrao interno. Quim. Nova 33: 978-980.   DOI   ScienceOn
14 European Committee for Standardization. 2003. EN14103: Fatty acid methyl esters (FAME) - Determination of ester and linolenic acid methyl esters contents. Brussels.
15 Fakas, S., S. Papanikolaou, M. Galiotou-Panauotou, M. Komaitis, and G. Aggelis. 2008. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J. Appl. Microbiol. 105: 1062- 1070.   DOI   ScienceOn
16 Marques, M. V., C. F. G. Silva, F. F. Naciuk, and L. A. M. Fontoura. 2008. A quimica, os processos de obtencao e as especificacoes do biodiesel. Revista Analytica 33: 72-87.
17 Meher, L. C., D. Vidya Sagar, and S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification--a review. Renew. Sustain. Energy Rev. 10: 248-268.   DOI   ScienceOn
18 Meng, X., J. Yang, X. Xu, L. Zhang, Q. Nie, and M. Xian. 2009. Biodiesel production from oleaginous microorganisms. Renew. Energy 34: 1-5.   DOI   ScienceOn
19 Monteiro, M. R., A. R. P. Ambrozin, L. M. Liao, and A. G. Ferreira. 2008. Critical review on analytical methods for biodiesel characterization. Talanta 77: 593-605.   DOI   ScienceOn
20 Illman, A. M., A. H. Scragg, and S. W. Shales. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microbial Technol. 27: 631-635.   DOI   ScienceOn
21 Li, Q., W. Du, and D. Liu. 2008. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol. 80: 749- 756.   DOI   ScienceOn
22 MacLafferty, F. W. and F. Turesek. 1993. Interpretation of Mass Spectra. 4th Ed. University Science Books.
23 Vicente, G., L. F. Bautista, F. J. Gutiérrez, R. Rodriguez, V. Martinez, R. Rodriguez-Frómeta, et al. 2010. Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels 24: 3173-3178.   DOI   ScienceOn
24 Galembeck, F., C. A. S. Barbosa, and R. A. de Souza. 2009. Aproveitamento sustentavel de biomassa e de recursos naturais na inovacao quimica. Quim. Nova 32: 571-581.   DOI   ScienceOn
25 Geris dos Santos, R. M. and E. Rodrigues-Fo. 2002. Meroterpenes from Penicillium sp. found in association with Melia azedarach. Phytochemistry 61: 907-912.   DOI   ScienceOn
26 Goldemberg, J. 2009. Biomassa e energia. Quim. Nova 32: 582-587.   DOI   ScienceOn
27 Gouda, M., S. H. Omar, and L. M. Aouad. 2008. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 24: 1703-1711.   DOI   ScienceOn
28 Helwani, Z., M. R. Othman, N. Aziz, W. J. N. Fernando, and J. Kim. 2009. Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Process. Technol. 90: 1502-1514.   DOI   ScienceOn
29 The National Petroleum Agency, Natural Gas and Biofuels of Brazil. 2008. Resolution no 7. [online] Available at: http://nxt.anp. gov.br/NXT/gateway.dll/leg/resolucoes_anp/2008/mar%C3%A7o/ ranp%207%20-%202008.xml?f=templates$fn=document-
30 Vicente, G., L. F. Bautista, R. Rodriguez, F. J. Gutiérrez, I. Sábada, R. M. Ruiz-Vázquez, et al. 2009. Biodiesel production from biomass of an oleaginous fungus. Biochem. Eng. J. 48: 22- 27.   DOI   ScienceOn
31 Vicente, G., M. Martínez, and J. Aracil. 2004. Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresour. Technol. 92: 297-305.   DOI   ScienceOn
32 Vichi, F. M. and M. T. C. Mansor. 2009. Energia, meio ambiente e economia: o Brasil no contexto mundial. Quim. Nova 32: 757-767.   DOI   ScienceOn
33 Wynn, J. P. and C. Ratledge. 1997. Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143: 253-257.   DOI   ScienceOn
34 Wynn, J., A. Kendrick, and C. Ratledge. 1997. Sesamol as an inhibitor of growth and lipid metabolism in Mucor circinelloides via its action on malic enzyme. Lipids 32: 605-610.   DOI   ScienceOn
35 Petrini, O., T. N. Sieber, L. Toti, and O. Viret. 1992. Ecology, metabolite production and substrate utilization in endophytic fungi. Nat. Toxins 1: 185-196.
36 Navarro, E., J. M. Lorca-Pascual, M. D. Quilles-Rosillo, F. E. Nicolas, V. Garre, S. Torres-Martinez, et al. 2001. A negative regulator of light-inducible carotenogenesis Mucor circinelloides. Molec. Genet. Genomics 266: 463-470.   DOI   ScienceOn
37 Nicolas, F. E., S. Torres-Martinez, and R. M. Ruiz-Vazquez. 2003. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO J. 22: 3983-3991.   DOI
38 Papanikolaou, S., M. Komaitis, and G. Aggelis. 2004. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour. Technol. 95: 287-291.
39 Pinto, A. C., L. L. N. Guarieiro, M. J. C. Rezende, N. M. Ribeiro, E. A. Torres, W. A. Lopes, et al. 2005. Biodiesel: An overview. J. Braz. Chem. Soc. 16: 1313-1330.   DOI   ScienceOn