Browse > Article
http://dx.doi.org/10.4014/jmb.1101.12040

Isolation and Characterization of a Mesophilic Arthrospira maxima Strain Capable of Producing Docosahexaenoic Acid  

Hu, Hongjun (Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences)
Li, Yeguang (Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences)
Yin, Chuntao (Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences)
Ouyang, Yexin (Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.7, 2011 , pp. 697-702 More about this Journal
Abstract
A strain of the cyanobacterium Arthrospira was isolated from Lake Chahannaoer in northern China and was characterized according to microscopic morphology, photosynthetic oxygen-evolving activity, growth rate, and nutritional profile. Compared with thermophilic Arthrospira species occurring naturally in tropical and subtropical lakes, this isolate is mesophilic and grows optimally at ${\sim}20^{\circ}C$. The total protein, fatty acid, phycocyanin, carotenoid, and chlorophyll a contents were 67.6, 6.1, 4.32, 0.29, and 0.76 grams per 100 grams of dry weight, respectively. The strain is rich in polyunsaturated fatty acids (PUFAs). An essential omega-3 fatty acid, docosahexaenoic acid (DHA), was detected, and ${\gamma}$-linolenic acid (GLA) and DHA accounted for 28.3% of the total fatty acid content. These features of this newly isolated strain make it potentially useful in commercial mass culture in local areas or as a biofuel feedstock. It is also an alternative resource for studying the metabolic PUFA pathways and mechanisms of cold stress tolerance in cyanobacteria.
Keywords
Polyunsaturated fatty acids (PUFAs); docosahexaenoic acid (DHA); ${\gamma}$-linolenic acid (GLA); mesophilic; Arthrospira maxima;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Zheng, X., M. Zhang, J. Dong, Z. Gao, C. Xu, Z. Han, B. Zhang, D. Sun, and K. Wang. 1992. The Salt Lakes in Inner Mongolia, China [in Chinese], pp. 248-250. Science Press, Beijing, China.
2 Vonshak, A. 1997. Spirulina: Growth, physiology and biochemistry, pp. 175-204. In A. Vonshak (ed.). Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor & Francis Ltd., London.
3 Wada, H., Z. Gombos, and N. Murata. 1994. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc. Natl. Acad. Sci. USA 91: 4273-4277.   DOI   ScienceOn
4 Yin, C., H. Hu, X. Gong, and Y. Geng. 1997. Effects of cultural conditions on fatty acid composition and content in Spirulina platensis. J. Wuhan Bot. Res. 15: 59-65.
5 Yin, C., H. Hu, Y. Li, X. Gong, and D. Shi. 1997. Studies on middle temperature strains selection of Spirulina platensis. J. Wuhan Bot. Res. 15: 250-254.
6 Yurko-Mauro, K. 2010. Cognitive and cardiovascular benefits of docosahexaenoic acid in aging and cognitive decline. Curr. Alzheimer Res. 7: 190-196.   DOI   ScienceOn
7 Zarrouk, C. 1966. Contribution a l'etude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitl. These de Doctorat d'Etat, Universite de Paris, France.
8 Cohen, Z., H. A. Norman, and Y. M. Heimer. 1995. Microalgae as a source of omega-3 fatty acids. World Rev. Nutr. Diet 77: 1-31.
9 Colla, L. M., C. O. Reinehr, C. Reichert, and J. A. V. Costa. 2007. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 98: 1489-1493.   DOI   ScienceOn
10 Ethier, S., K. Woisard, D. Vaughan, and Z. Wen. 2011. Continuous culture of the microalgae Schizochytrium limacinum on biodieselderived crude glycerol for producing docosahexaenoic acid. Bioresour. Technol. 102: 88-93.   DOI   ScienceOn
11 Behrens, P. W. and D. J. Kyle. 1996. Microalgae as a source of fatty acids. J. Food Lipids 3: 259-272.   DOI   ScienceOn
12 Franke, H., M. Springer, O. Pulz, U. Tietz, and U. Mueller. 1994. Polyunsaturated fatty acids from microalgae. Int. Food Ingred. 4: 41-45.
13 Belay, A. 2008. Spirulina (Arthrospira): Production and quality assurance, pp. 1-25. In M. E. Gershwin and A. Belay (eds.). Spirulina in Human Nutrition and Health. CRC Press, London/ New York.
14 Carreau, J. P. and J. P. Dubacq. 1978. Adaptation of a macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J. Chromatogr. 151: 384-390.   DOI   ScienceOn
15 Choi, G.-G., M.-S. Bae, C.-Y. Ahn, and H.-M. Oh. 2008. Enhanced biomass and γ-linolenic acid production of mutant strain Arthrospira platensis. J. Microbiol. Biotechnol. 18: 539-544.
16 Ciferri, O. and O. Tiboni. 1985. The biochemistry and industrial potential of Spirulina. Annu. Rev. Microbiol. 89: 503-526.
17 Apt, K. E. and P. W. Behrens. 1999. Commercial developments in microalgal biotechnology. J. Phycol. 35: 215-226.   DOI   ScienceOn
18 Ciferri, O. 1983. Spirulina, the edible microorganism. Microbiol. Rev. 47: 551-578.
19 Jenski, L. J. and W. Stillwell. 2001. Role of docosahexaenoic acid in determing membrane structure and function, pp. 41-62. In D. Mostofsky, S. Yehuda, and N. Jr. Salem (eds.). Fatty Acids: Physiological and Behavioral Functions. Humana Press Inc., Totowa, NJ.
20 Ananyev, G., D. Carrieri, and G. C. Dismukes. 2008. Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium Arthrospira (Spirulina) maxima. Appl. Environ. Microbiol. 74: 6102-6113.   DOI   ScienceOn
21 Kanazawa, A. 1997. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture 155: 129- 134.   DOI
22 Li, D. M. and Y. Z. Qi. 1997. Spirulina industry in China: Present status and future prospects. J. Appl. Phycol. 9: 25-28.   DOI   ScienceOn
23 Lu, Y. M., W. Z. Xiang, and Y. H. Wen. 2010. Spirulina (Arthrospira) industry in Inner Mongolia of China: Current status and prospects. J. Appl. Phycol. 23: 265-269.
24 Mutanda T., D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj, and F. Bux. 2011. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 102: 57-70.   DOI   ScienceOn
25 Muhling, M., A. Belay, and B. A. Whitton. 2005. Variation in fatty acid composition of Arthrospira (Spirulina) strains. J. Appl. Phycol. 17: 137-146.   DOI   ScienceOn
26 Hu, H. 2003. The Biology and Biotechnology of Spirulina (Arthrospira) [in Chinese]. Science Press (co-published with Springer-Verlag GmbH), Beijing.
27 Rupp, H., P. T. Rupp, D. Wagner, P. Alter, and B. Maisch. 2006. Microdetermination of fatty acids by gas chromatography and cardiovascular risk stratification by the "EPA+DHA level", pp.47-79. In B. Maisch and R. Oelze (eds.). Cardiovascular Benefits of Omega-3 Polyunsaturated Fatty Acids. IOS Press, Amsterdam.
28 Gotz, T., U. Windhovel, P. Böger, and G. Sandmann. 1999. Protection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC7942. Plant Physiol. 120: 599-604.   DOI
29 Grima, E. M., R. A. Medina, and G. A. Gimenez. 1999. Recovery of algal PUFAs, pp. 108-144. In Z. Cohen (ed.). Chemicals from Microalgae. Taylor & Francis, London.
30 Herbert, D., P. J. Phipps, and R. E. Strange. 1971. Chemical analysis of microbial cells, pp. 209-344. In J. R. Norris and D. W. Ribbons (eds.). Method in Microbiology. Academic Press, London/New York.
31 Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins. 2008. Microalgal triacylglycerols as feed stocks for biofuel production: Perspectives and advances. Plant J. 54: 621-639.   DOI   ScienceOn
32 Tomaselli, L., L. Giovannetti, A. Sacchi, and F. Bocci. 1988. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2, pp. 303-314. In T. Stadler, J. Mellion, M. C. Verdus, Y. Karamanos, H. Morvan, and D. Christiaen (eds.). Algal Biotechnology. Elsevier Applied Science, London.
33 Sanghvi, A. M. and Y. M. Lo. 2010. Present and potential industrial applications of macro- and microalgae. Recent Pat. Food Nutr. Agric. 2: 187-194.
34 Tanticharoen, M., M. Reungjitchachawali, B. Boonag, P. Vonktaveesuk, A. Vonshak, and Z. Cohen. 1994. Optimization of gamma-linolenic acid (GLA) production in Spirulina platensis. J. Appl. Phycol. 6: 295-300.   DOI   ScienceOn