Browse > Article
http://dx.doi.org/10.4014/jmb.1012.12022

Diversity Analysis of Diazotrophic Bacteria Associated with the Roots of Tea (Camellia sinensis (L.) O. Kuntze)  

Arvind, Gulati (Plant Pathology and Microbiology Laboratory, Hill Area Tea Science Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Sood, Swati (Plant Pathology and Microbiology Laboratory, Hill Area Tea Science Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Rahi, Praveen (Plant Pathology and Microbiology Laboratory, Hill Area Tea Science Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Thakur, Rishu (Plant Pathology and Microbiology Laboratory, Hill Area Tea Science Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Chauhan, Sunita (Plant Pathology and Microbiology Laboratory, Hill Area Tea Science Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Nee Chadha, Isha Chawla (Plant Pathology and Microbiology Laboratory, Hill Area Tea Science Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.6, 2011 , pp. 545-555 More about this Journal
Abstract
The diversity elucidation by amplified ribosomal DNA restriction analysis and 16S rDNA sequencing of 96 associative diazotrophs, isolated from the feeder roots of tea on enriched nitrogen-free semisolid media, revealed the predominance of Gram-positive over Gram-negative bacteria within the Kangra valley in Himachal Pradesh, India. The Gram-positive bacteria observed belong to two taxonomic groupings; Firmicutes, including the genera Bacillus and Paenibacillus; and Actinobacteria, represented by the genus Microbacterium. The Gram-negative bacteria included ${\alpha}$-Proteobacteria genera Brevundimonas, Rhizobium, and Mesorhizobium; ${\gamma}$-Proteobacteria genera Pseudomonas and Stenotrophomonas; and ${\beta}$-Proteobacteria genera Azospira, Burkholderia, Delftia, Herbaspirillum and Ralstonia. The low level of similarity of two isolates, with the type strains Paenibacillus xinjiangensis and Mesorhizobium albiziae, suggests the possibility of raising species novum. The bacterial strains of different phylogenetic groups exhibited distinct carbon-source utilization patterns and fatty acid methyl ester profiles. The strains differed in their nitrogenase activities with relatively high activity seen in the Gramnegative strains exhibiting the highest similarity to Azospira oryzae, Delftia lacustris and Herbaspirillum huttiense.
Keywords
Camellia sinensis; diazotrophic bacteria; acetylene reduction assay; 16S rDNA sequencing; FAME analysis; carbon-source utilization;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Natsvaladze, M. Y., L. K. Nitse, and S. N. Sakharova. 1992. Free-living and associative diazotrophs in the rhizocoenosis of tea. Izvestia Timiryazevskoi Sel' sokhozyaistvennoi Akademii 2: 95-102.
2 Ndifon, W., J. B. Plotkin, and J. Dushoff. 2009. On the accessibility of adaptive phenotypes of a bacterial metabolic network. PLoS Comput. Biol. 5: 1-11.
3 O'Donnell, A. G., M. Seasman, A. Macrae, I. Waite, and J. T. Davies. 2001. Plants and fertilisers as drivers of change in microbial community structure and function in soils Plant Soil 232: 135-145.   DOI
4 Oh, K., T. Kato, Z. P. Li, and F. Y. Li. 2006. Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide. Pedosphere 16: 770-777.   DOI   ScienceOn
5 Okano, K., K. Chutani, and K. Matsuo. 1997. Suitable level of nitrogen fertilizer for tea (Camellia sinensis L.) plants in relation to growth, photosynthesis, nitrogen uptake and accumulation of free amino acids. Jpn. J. Crop Sci. 66: 279-287.   DOI   ScienceOn
6 Pandey, A. and L. M. S. Palni. 1996. The rhizosphere effect of tea on soil microbes in a Himalayan monsoonal location. Biol. Fertil. Soils 21: 131-137.   DOI   ScienceOn
7 Pandey, A. and L. M. S. Palni. 1997. Bacillus species: The dominant bacteria of the rhizosphere of established tea bushes. Microbiol. Res. 152: 359-365.   DOI   ScienceOn
8 Pandey, A., L. M. S. Palni, and N. Coulomb. 1997. Antifungal activity of bacteria isolated from rhizosphere of established tea bushes. Microb. Ecol. 152: 105-112.
9 Martensson, L., B. Deiz, I. Wartianen, Z. Weiwen, El-S. Rehab, and R. Ulla. 2009. Diazotrophic diversity, nifH gene expression and nitrogenase activity in a rice paddy field in Fujian, China. Plant Soil 325: 207-218.   DOI   ScienceOn
10 Martinez, L., J. Caballero-Mellado, J. Orozco, and E. Martinez- Romero. 2003. Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 257: 35-47.   DOI   ScienceOn
11 Martinez-Romero, E. and J. Caballero-Mellado. 1996. Rhizobium phylogenies and bacterial genetic diversity. Crit. Rev. Plant Sci. 15: 113-140.   DOI
12 Matiru, V. N. and F. D. Dakora. 2004. Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr. J. Biotechnol. 3: 1-7.   DOI
13 Mehboob, I., M. Naveed, and A. Zahir. 2009. Rhizobial association with non-legumes: Mechanisms and applications. Crit. Rev. Plant Sci. 28: 432-456.   DOI   ScienceOn
14 Montanez, A., C. Abreu, P. R. Gill, G. Hardarson, and M. Sicardi. 2009. Biological nitrogen fixation in maize (Zea mays L.) by $^{15}__N$ isotope-dilution and identification of associative culturable diazotrophs. Biol. Fertil. Soils 45: 253-263.   DOI   ScienceOn
15 Guerlava, P., V. Izac, and J. L. Tholozan. 1998. Comparison of different methods of cell lysis and protein measurements in Clostridium perfringens: Application to the cell volume determination. Curr. Microbiol. 36: 131-135.   DOI   ScienceOn
16 Naher, U. A., O. Radziah, Z. H. Shamsiddin, M. S. Halimi, and M. Razi. 2009. Isolation of diazotrophs from different soils of Tanjong Karang rice growing area in Malaysia. Int. J. Agric. Biol. 11: 547-552.
17 Estrada-De Los Santos, P., R. Bustillos-Cristales, and J. Cabellaro-Mellado. 2001. Burkholderia, a genus rich in plantassociated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67: 2790-2798.   DOI   ScienceOn
18 Gardener, B. B. M. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94: 1252-1258.   DOI
19 Han, J., L. Sun, X. Dong, Z. Cai, X. Sun, H. Yang, Y. Wang, and W. Song. 2005. Characterization of a novel plant growthpromoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst. Appl. Microbiol. 28: 66-76.   DOI   ScienceOn
20 Han, W., S. J. Kemmitt, and P. C. Brookes. 2007. Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Biochemistry 39: 1468-1478.
21 Hardy, R. W. F., R. D. Holsten, E. K. Jackson, and R. C. Burns. 1968. The acetylene-ethylene assay for $N_2$ fixation: Laboratory and field evaluation. Plant Physiol. 43: 1185-1207.   DOI   ScienceOn
22 Hejnar, P., Z. Chmela, and M. Rypka. 2002. Fatty acid analysis of Stenotrophomonas maltophilia clinical strains showing different susceptibility to antibiotics at 30 and $37{^{\circ}C}$. Folia Microbiol. 47: 742-746.   DOI   ScienceOn
23 Kennedy, I. R., A. T. M. A. Choudhury, and M. L. Keeskes. 2004. Non-symbiotic bacterial diazotrophs in crop farming systems: Can their potential for plant growth promotion be better exploited? Soil Biol. Biochem. 36: 1229-1244.   DOI   ScienceOn
24 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI   ScienceOn
25 Beauchamp, C. J., G. Levesque, D. Prevost, and F. P. Chalifour. 2006. Isolation of free-living dinitrogen-fixing bacteria and their activity in compost containing de-inking paper sludge. Bioresour. Technol. 97: 1002-1011.   DOI   ScienceOn
26 Ladha, J. K. and P. M. Reddy. 2000. Steps for nitrogen-fixation in rice, pp. 359. In J. K. Ladha and P. M. Reddy (eds.). "The quest for nitrogen fixation in rice" Proceedings of the Third Working Group Meeting on Assessing Opportunities for Nitrogen Fixation in Rice, Makai City (Philippines).
27 Lugtenberg, B. J. J. and L. C. Dekkers. 1999. What makes Pseudomonas bacteria rhizosphere competent? Environ. Microbiol. 1: 9-13.   DOI   ScienceOn
28 Basile, F., K. J. Voorhees, and T. L. Hadfield. 1995. Microorganism Gram-type differentiation based on pyrolysis-mass spectrometry of bacterial fatty acid methyl ester extracts. Appl. Environ. Microbiol. 61: 1534-1539.
29 Bhattacharjee, R. B., A. Singh, and S. N. Mukhopadhyay. 2008. Use of nitrogen-fixing bacteria as biofertilizer for non-legumes: Prospects and challenges. Appl. Microbiol. Biotechnol. 80: 199-209.   DOI   ScienceOn
30 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254.   DOI   ScienceOn
31 Chowdhury, S. P., M. Schmid, A. Hartmann, and A. K. Tripathi. 2007. Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar desert, India. Microb. Ecol. 54: 82- 90.   DOI   ScienceOn
32 Ding, L. and A. Yokota. 2004. Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. Int. J. Syst. Evol. Microbiol. 54: 2223-2230.   DOI   ScienceOn
33 Ding, Y., J. Wang, Y. Liu, and S. Chen. 2005. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J. Appl. Microbiol. 99: 1271-1281.   DOI   ScienceOn
34 Adhikari, T. B., C. M. Joseph, G. P. Yang, D. A. Phillips, and L. M. Nelson. 2001. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can. J. Microbiol. 47: 916-924.   DOI   ScienceOn
35 Dutta, D. and R. Gachhui. 2006. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int. J. Syst. Evol. Microbiol. 56: 1899-1903.   DOI   ScienceOn
36 Eckford, R., F. D. Cook, D. Saul, J. Aislabie, and J. Foght. 2002. Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soil. Appl. Environ. Microbiol. 68: 5181-5185.   DOI   ScienceOn
37 Elmerich, C. and W. E. Newton. 2007. Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. Springer Verlag.
38 Albino, U., D. P. Saridakis, M. C. Ferreira, M. Hungria, P. Vinuesa, and G. Andrade. 2006. High diversity of diazotrophic bacteria associated with the carnivorous plant Drosera villosa var. villosa growing in oligotrophic habitats in Brazil. Plant Soil 287: 199-207.   DOI
39 Bae, H. S., B. A. Rash, F. A. Rainey, M. Fernanda Nobre, I. Tiago, M. S. da Costa, and W. M. Moe. 2007. Description of Azospira restricta sp. nov., a nitrogen-fixing bacterium isolated from groundwater. Int. J. Syst. Evol. Microbiol. 57: 1521-1526.   DOI   ScienceOn
40 Andrade, G., E. Esteban, L. Velascol, J. L. Maria, and E. J. Bedmar. 1997. Isolation and identification of $N_2$-fixing microorganisms from the rhizosphere of Capparis spinosa (L.). Plant Soil 197: 19-23.   DOI   ScienceOn
41 Baldani, V. L. D. and J. Doebereiner. 1980. Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol. Biochem. 12: 433-439.   DOI   ScienceOn
42 Saravanakumar, D., C. Vijayakumar, N. Kumar, and R. Samiyappan. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot. 26: 556-565.   DOI   ScienceOn
43 Rozycki, H., H. Dahm, E. Strzelcyk, and C. Y. Li. 1999. Diazotrophic bacteria in root free soil in the root of pine (Pinus sylvestris L.) and oak (Quercus robur L.). Appl. Soil Ecol. 12: 239-250.   DOI   ScienceOn
44 Park, M., C. Kin, J. Yang, H. Lee, W. Shin, S. Kim, and. T. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160: 127-133.   DOI   ScienceOn
45 Prakamhang, J., K. Minamisawa, K. Teamtaisong, N. Boonkerd, and N. Teaumroong. 2009. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl. Soil Ecol. 42: 141-149.   DOI   ScienceOn
46 Rodriguez Caceres, E. A. 1982. Improved medium for isolation of Azospirillum spp. Appl. Environ. Microbiol. 44: 990-991.
47 Roesch, L. F. W., F. A. O. Camargo, F. M. Bento, and E. W. Triplett. 2008. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302: 91- 104.   DOI
48 Sachdev, D., V. Agarwal, P. Verma, Y. Shouche, P. Dhakephalkar, and B. Chopade. 2009. Assessment of microbial biota associated with rhizosphere of wheat (Triticum aestivum) during flowering stage and their plant growth promoting traits. Internet J. Microbiol. Accessible http://www.ispub.com/journal/the_internet_ journal_of_microbiology/volume_7_number_2_26.
49 Saikia, S. P. and V. Jain. 2007. Biological nitrogen fixation with non-legumes: An achievable target or a dogma? Curr. Sci. 92: 317-322.
50 Saleena, L. M., S. Rangarajan, and S. Nair. 2002. Diversity of Azospirillum strains isolated from rice plants grown in saline and nonsaline sites of coastal agricultural ecosystems. Microb. Ecol. 44: 271-277.   DOI   ScienceOn
51 Sarita, S., U. B. Priefer, J. Prell, and P. K. Sharma. 2008. Diversity of nifH gene amplified from rhizosphere soil DNA. Curr. Sci. 94: 109-115.
52 Sasser, M. 1990. Tracking a Strain Using the Microbial Identification System. Technical Note 102. MIS, Newark, DE.
53 Sato, A., T. Watanabe, Y. Unno, E. Purnomo, M. Osaki, and T. Shinano. 2009. Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical arbor, Melastoma malabathricum L. Microbes Environ. 24: 81-87.   DOI
54 Sharma, D. K., S. Thakur, and K. L. Sharma. 2005. Effect of method, time and levels of phosphorous application on yield and quality of tea (Camellia sinensis). Indian J. Agron. 50: 324-326.
55 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
56 Soares, R. A., L. F. R. Roesch, G. Zanatta, F. A. O. Camargo, and L. M. P. Passaglia. 2006. Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Appl. Soil Ecol. 33: 221-234.   DOI   ScienceOn
57 Sood, A., S. Sharma, V. Kumar, and R. L. Thakur. 2007. Antagonism of dominant bacteria in tea rhizosphere of Indian Himalayan regions. J. Appl. Sci. Environ. Manage. 11: 63-66.
58 Sud, R. G. and A. Baru. 2000. Seasonal variations in theaflavins, thearubigins, total colour and brightness of Kangra orthodox tea (Camellia sinensis (L.) O. Kuntze) in Himachal Pradesh. J. Sci. Food Agric. 80: 1291-1299.   DOI   ScienceOn
59 Tan, Z. and B. Reinhold-Hurek. 2000. Dechlorosoma suillum Achenbach et al. 2001 is a later subjective synonym of Azospira oryzae Reinhold-Hurek and Hurek 2000. Int. J. Syst. Evol. Microbiol. 53: 1139-1142.
60 Van de Peer, Y. and R. de Watcher. 1994. TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10: 569-570.
61 Zhang, G. X., G. X. Peng, E. T. Wang, H. Yan, H. Y. Qing, W. Zhang, X. Lou, H. Wu, and Z. Y. Tan. 2008. Diverse endophytic nitrogen-fixing bacteria isolated from wild rice Oryza rufipogon and description of Phytobacter diazotrophicus gen. nov. sp. nov. Arch. Microbiol. 189: 431-439.   DOI   ScienceOn