Browse > Article
http://dx.doi.org/10.4014/jmb.1104.04006

Identification of a p-Cresol Degradation Pathway by a GFP-Based Transposon in Pseudomonas and Its Dominant Expression in Colonies  

Cho, Ah-Ra (Department of Microbiology, Changwon National University)
Lim, Eun-Jin (Department of Microbiology, Changwon National University)
Veeranagouda, Yaligara (Department of Microbiology, Changwon National University)
Lee, Kyoung (Department of Microbiology, Changwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.11, 2011 , pp. 1179-1183 More about this Journal
Abstract
In this study, the chromosome-encoded pcuRCAXB genes that are required for p-cresol degradation have been identified by using a newly constructed green fluorescent protein (GFP)-based promoter probe transposon in the long-chain alkylphenol degrader Pseudomonas alkylphenolia. The deduced amino acid sequences of the genes showed the highest identities at the levels of 65-93% compared with those in the databases. The transposon was identified to be inserted in the pcuA gene, with the promoterless gfp gene being under the control of the pcu catabolic gene promoter. The expression of GFP was positively induced by p-cresol and was about 10 times higher by cells grown on agar than those in liquid culture. In addition, p-hydroxybenzoic acid was detected during p-cresol degradation. These results indicate that P. alkylphenolia additionally possesses a protocatechuate ortho-cleavage route for p-cresol degradation that is dominantly expressed in colonies.
Keywords
Pseudomonas alkylphenolia; p-cresol methylhydroxylase; promoter-probe; gfp reporter; p-cresol degradation; transposon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Bayly, R. C., S. Dagley, and D. T. Gibson. 1966. The metabolism of cresols by species of Pseudomonas. Biochem. J. 101: 293-301.   DOI
2 Bertani, L. E. and G. Bertani. 1970. Preparation and characterization of temperate, non-inducible bacteriophage P2 (host: Escherichia coli). J. Gen. Virol. 6: 201-212.   DOI   ScienceOn
3 Borrell, B. 2009. Why study pig odor? Sci. Am. Accessed at http:// www.scientificamerican.com/article.cfm?id=why-study-pig-odor.
4 Cho, J. H., D. K. Jung, K. Lee, and S. Rhee. 2009. Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas. J. Biol. Chem. 284: 34321-34330.   DOI   ScienceOn
5 Cho, M. C., D.-O. Kang, B. D. Yoon, and K. Lee. 2000. Toluene degradation pathway from Pseudomonas putida F1: Substrate specificity and gene induction by 1-substituted benzenes. J. Ind. Microbiol. Biotechnol. 25: 163-170.   DOI   ScienceOn
6 Figurski, D. H. and D. R. Helinski. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648-1652.   DOI   ScienceOn
7 Choi, E. N., M. C. Cho, Y. Kim, C. K. Kim, and K. Lee. 2003. Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ringfission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology 149: 795-805.   DOI   ScienceOn
8 Cunane, L. M., Z. W. Chen, N. Shamala, F. S. Mathews, C. N. Cronin, and W. S. McIntire. 2000. Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: Gated substrate entry and proton relays support the proposed catalytic mechanism. J. Mol. Biol. 295: 357-374.   DOI   ScienceOn
9 de Lorenzo, V., M. Herrero, U. Jakubzik, and K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J. Bacteriol. 172: 6568-6572.
10 Dennis, J. J. and G. J. Zylstra. 1998. Plasposons: Modular selfcloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl. Environ. Microbiol. 64: 2710-2715.
11 Miller, V. L. and J. J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170: 2575-2583.   DOI
12 Harwood, C. S. and R. E. Parales. 1996. The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553-590.   DOI   ScienceOn
13 Hopper, D. J. 1976. The hydroxylation of p-cresol and its conversion to p-hydroxybenzaldehyde in Pseudomonas putida. Biochem. Biophys. Res. Commun. 69: 462-468.   DOI   ScienceOn
14 Jeong, J. J., J. H. Kim, C. K. Kim, I. Hwang, and K. Lee. 2003. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: Genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3- dioxygenase. Microbiology 149: 3265-3277.   DOI   ScienceOn
15 Joesaar, M., E. Heinaru, S. Viggor, E. Vedler, and A. Heinaru. 2010. Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiol. Ecol. 72: 464-475.   DOI   ScienceOn
16 Kim, J., J. H. Fuller, G. Cecchini, and W. S. McIntire. 1994. Cloning, sequencing, and expression of the structural genes for the cytochrome and flavoprotein subunits of p-cresol methylhydroxylase from two strains of Pseudomonas putida. J. Bacteriol. 176: 6349-6361.   DOI
17 Kim, J. S., J. H. Kim, E. K. Ryu, J.-K. Kim, C.-K. Kim, I. Hwang, and K. Lee. 2004. Versatile catabolic properties of the Tn4371-encoded bph pathway in Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643. J. Microbiol. Biotechnol. 14: 302-311.
18 Kukor, J. J. and R. H. Olsen. 1992. Complete nucleotide sequence of tbuD, the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1, and functional analysis of the encoded enzyme. J. Bacteriol. 174: 6518-6526.
19 Larsen, R. A., M. M. Wilson, A. M. Guss, and W. W. Metcalf. 2002. Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch. Microbiol. 178: 193-201.   DOI   ScienceOn
20 Lee, K. and Y. Veeranagouda. 2009. Ultramicrocells form by reductive division in macroscopic Pseudomonas aerial structures. Environ. Microbiol. 11: 1117-1125.   DOI   ScienceOn
21 Schmidt, E. G. 1949. Urinary phenols; the simultaneous determination of phenol and p-cresol in urine. J. Biol. Chem. 179: 211-215.
22 Yun, J. I., K. M. Cho, J. K. Kim, S. O. Lee, K. Cho, and K. Lee. 2007. Mutation of rpoS enhances Pseudomonas sp. KL28 growth at higher concentrations of m-cresol and changes its surface-related phenotypes. FEMS Microbiol. Lett. 269: 97- 103.   DOI   ScienceOn
23 Shingler, V., J. Powlowski, and U. Marklund. 1992. Nucleotide sequence and functional analysis of the complete phenol/3,4- dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174: 711-724.   DOI
24 Stanier, R. Y., N. J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: A taxomonic study. J. Gen. Microbiol. 43: 159-271.   DOI   ScienceOn
25 Suarez, A., A. Guttler, M. Stratz, L. H. Staendner, K. N. Timmis, and C. A. Guzman. 1997. Green fluorescent proteinbased reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196: 69-74.   DOI
26 Tang, X., B. F. Lu, and S. Q. Pan. 1999. A bifunctional transposon mini-Tn5gfp-km which can be used to select for promoter fusions and report gene expression levels in Agrobacterium tumefaciens. FEMS Microbiol. Lett. 179: 37-42.   DOI   ScienceOn
27 Thony, B. and H. Hennecke. 1989. The -24/-12 promoter comes of age. FEMS Microbiol. Rev. 5: 341-357.
28 Wright, A. and R. H. Olsen. 1994. Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1. Appl. Environ. Microbiol. 60: 235-242.