Browse > Article
http://dx.doi.org/10.4014/jmb.1004.04033

Production of Indole-3-Acetic Acid by the Cyanobacterium Arthrospira platensis Strain MMG-9  

Ahmed, Mehboob (Department of Microbiology and Molecular Genetics, University of the Punjab)
Stal, Lucas J. (Department of Marine Microbiology, Netherlands Institute of Ecology - KNAW)
Hasnain, Shahida (Department of Microbiology and Molecular Genetics, University of the Punjab)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.9, 2010 , pp. 1259-1265 More about this Journal
Abstract
The filamentous cyanobacterium Arthrospira platensis strain MMG-9 was isolated from a rice field. The ability of this strain to synthesize the bioactive compound indole-3-acetic acid (IAA) was demonstrated. IAA was extracted from the culture of A. platensis strain MMG-9 and its identity was confirmed by thin-layer chromatography (TLC) as well as by high-performance liquid chromatography (HPLC). The IAA precursor L-tryptophan was required for IAA biosynthesis. Released IAA increased with the increase of the initial concentration of L-tryptophan in the medium and with the incubation time. A. platensis strain MMG-9 accumulated more IAA than it released into the medium. The bioactivity of the secreted IAA was shown by its effect on the formation of roots by Pisum sativum. There was a significant positive effect of the supernatant of cultures of A. platensis strain MMG-9 on the number of lateral roots of P. sativum, whereas a negative effect on root length was observed.
Keywords
Arthrospira platensis; indole 3-acetic acid; Pisum sativum; bioassay; plant hormone;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Yuan, Z. C., P. Liu, P. Saenkham, K. Kerr, and E. W. Nester. 2008. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium - plant interactions. J. Bacteriol. 190: 494-507.   DOI   ScienceOn
2 Dunlap, J. R. and K. M. Robacker. 1988. Nutrient salts promote light-induced degradation of indole-3-acetic acid in tissue culture media. Plant Physiol. 88: 379-382.   DOI   ScienceOn
3 Christiansen-Weniger, C. 1998. Endophytic establishment of diazotrophic bacteria in auxin-induced tumors of cereal crops. Crit. Rev. Plant Sci. 17: 55-76.   DOI   ScienceOn
4 Tsavkelova, E. A., S. Y. Klimova, T. A. Cherdyntseva, and A. I. Netrusov. 2006. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 42: 117-126.   DOI   ScienceOn
5 Cohen, Z. 1997. The chemicals of Spirullina, pp. 175-204. In A. Vonshak (ed.). Spirulina platensis (Arthrospira): Physiology, Cell-Biology, and Biotechnology. CRC Press, London
6 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.   DOI
7 Barazani, O. and J. Friedman. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol. 25: 2397-2406.   DOI   ScienceOn
8 Callis, J. 2005. Plant biology: Auxin action. Nature 435: 436-437.
9 Ahmad, F., I. Ahmad, and M. S. Khan. 2005. Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 29: 29-34.
10 Waterbury, J. 2006. The cyanobacteria - isolation, purification and identification, pp. 1053-1073. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (eds.). The Prokaryotes. Springer, The Netherlands.
11 Vestergard, M., L. Bjornlund, F. Henry, and R. Ronn. 2007. Decreasing prevalence of rhizosphere IAA producing and seedling root growth promoting bacteria with barley development irrespective of protozoan grazing regime. Plant Soil 295: 115-125.   DOI
12 Nissen, P. 1985. Dose responses of auxins. Physiol. Plant. 65: 357-374.   DOI
13 Tandeau de Marsac, N. and J. Houmard. 1988. Complementary chromatic adaptation: Physiological conditions and action spectra. Methods Enzymol. 167: 318-328.   DOI
14 Trabelsi, L., N. M'sakni, H. Ouada, H. Bacha, and S. Roudesli. 2009. Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol. Bioproc. Eng. 14: 27-31.   과학기술학회마을   DOI   ScienceOn
15 Sridevi, M. and K. V. Mallaiah. 2007. Production of indole-3-acetic acid by Rhizobium isolates from Sesbania species. Afr. J. Microbiol. Res. 1: 125-128.
16 Rossi, N., I. Petit, P. Jaouen, P. Legentilhomme, and M. Derouiniot. 2005. Harvesting of cyanobacterium Arthrospira platensis using inorganic filtration membranes. Separ. Sci. Technol. 40: 3033-3050.   DOI   ScienceOn
17 Sergeeva, E., A. Liaimer, and B. Bergman. 2002. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215: 229-238.   DOI   ScienceOn
18 Prasanna, R., P. Jaiswal, S. Nayak, A. Sood, and B. D. Kaushik. 2009. Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J. Microbiol. 49: 89-97.   DOI   ScienceOn
19 Ribnicky, D. M., N. Ilic, J. D. Cohen, and T. J. Cooke. 1996. The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism - The implications for carrot somatic embryogenesis. Plant Physiol. 112: 549-558.   DOI
20 McGinnis, S. and T. L. Madden. 2004. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32: W20.   DOI   ScienceOn
21 de-Bashan, L. E., H. Antoun, and Y. Bashan. 2008. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J. Phycol. 44: 938-947.   DOI   ScienceOn
22 Gravel, V., H. Antoun, and R. J. Tweddell. 2007. Effect of indole-acetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur. J. Plant Pathol. 119: 457-462.   DOI   ScienceOn
23 Kende, H. and J. Zeevaart. 1997. The five "classical" plant hormones. Plant Cell 9: 1197-1210.   DOI   ScienceOn
24 Martinez, V. M., J. Osuna, O. Paredes-Lopez, and F. Guevara. 1997. Production of indole-3-acetic acid by several wild-type strains of Ustilago maydis. World J. Microbiol. Biotechnol. 13: 295-298.   DOI   ScienceOn
25 Glick, B. R., C. L. Patten, G. Holguim, and D. M. Penrose. 1999. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press, London; River Edge, NJ.
26 Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796.
27 Fierer, N. and R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103: 626-631.   DOI   ScienceOn
28 George, E. A. 1976. Culture Centre of Algae and Protozoa. List of Strains 1976, 3rd Ed. Institute of Terrestrial Ecology, Natural Environmental Research Council, Cambridge.
29 Costacurta, A. and J. Vanderleyden. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21: 1-18.   DOI   ScienceOn