Browse > Article
http://dx.doi.org/10.4014/jmb.0910.10016

Effects of Electrochemical Reduction Reactions on the Biodegradation of Recalcitrant Organic Compounds (ROCs) and Bacterial Community Diversity  

Lee, Woo-Jin (Department of Biological Engineering, Seokyeong University)
Lee, Jong-Kwang (R&D Center, Samsung Engineering Company Ltd.)
Chung, Jin-Wook (R&D Center, Samsung Engineering Company Ltd.)
Cho, Yong-Ju (R&D Center, Samsung Engineering Company Ltd.)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.8, 2010 , pp. 1230-1239 More about this Journal
Abstract
Five bacterial species, capable of degrading the recalcitrant organic compounds (ROCs) diethyleneglycol monomethylether (DGMME), 1-amino-2-propanol (APOL), 1-methyl-2-pyrrolidinone (NMP), diethyleneglycol monoethylether (DGMEE), tetraethyleneglycol (TEG), and tetrahydrothiophene 1,1-dioxide (sulfolane), were isolated from an enrichment culture. Cupriavidus sp. catabolized $93.5{\pm}1.7$ mg/l of TEG, $99.3{\pm}1.2$ mg/l of DGMME, $96.1{\pm}1.6$ mg/l of APOL, and $99.5{\pm}0.5$ mg/l of NMP in 3 days. Acineobacter sp. catabolized 100 mg/l of DGMME, $99.9{\pm}0.1$ mg/l of NMP, and 100 mg/l of DGMEE in 3 days. Pseudomonas sp.3 catabolized $95.7{\pm}1.2$ mg/l of APOL and $99.8{\pm}0.3$ mg/l of NMP. Paracoccus sp. catabolized $98.3{\pm}0.6$ mg/l of DGMME and $98.3{\pm}1.0$ mg/l of DGMEE in 3 days. A maximum $43{\pm}2.0$ mg/l of sulfolane was catabolized by Paracoccus sp. in 3 days. When a mixed culture composed of the five bacterial species was applied to real wastewater containing DGMME, APOL, NMP, DGMEE, or TEG, 92~99% of each individual ROC was catabolized within 3 days. However, at least 9 days were required for the complete mineralization of sulfolane. Bacterial community diversity, analyzed on the basis of the TGGE pattern of 16S rDNA extracted from viable cells, was found to be significantly reduced in a conventional bioreactor after 6 days of incubation. However, biodiversity was maintained after 12 days of incubation in an electrochemical bioreactor. In conclusion, the electrochemical reduction reaction enhanced the diversity of the bacterial community and actively catabolized sulfolane.
Keywords
Electrochemical reduction; xenobiotics; TGGE; ethyleneglycol; pyrrolidinone; thiophene;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Van der Meer, J. R., W. De Vos, S. Harayama, and A. J. B. Zehnder. 1992. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56: 677-694.
2 Wei, X. and W. D. Bauer. 1998. Starvation-induced changes in motility, chemotaxis, and flagellation of Rhizobium meliloti. Appl. Environ. Microbiol. 64: 1708-1714.
3 Schell, J. A. 1985. Transcriptional control of the nah and sal hydrocarbon degradation operons by the nahr gene product. Gene 36: 301-309.   DOI   ScienceOn
4 Shin, H. S. and D. G. Jung. 2004. Determination of icing inhibitors (ethylene glycol monomethyl ether and diethylene glycol monomethyl ether) in ground water by gas chromatography-mass spectrometry. Bull. Kor. Chem. Soc. 25: 806-808.   DOI   ScienceOn
5 Spain, J. C. and P. A. van Veld. 1983. Adaptation of natural microbial communities to degradation of xenobiotic compounds: Effects of concentration, exposure, time, inoculum, and chemical structure. Appl. Environ. Microbiol. 45: 428-435.
6 Nishino, S. F. and J. C. Spain. 1993. Cell density-dependent adaptation of Pseudomonas putida to biodegradation of pnitrophenol. Environ. Sci. Technol. 27: 489-494.   DOI
7 Ogunseitan, O. A., I. K. Delgado, Y. L. Tsai, and B. H Olson. 1991. Effect of 2-hydroxybenzoate on the maintenance of naphthalene-degrading pseudomonads in seeded and unseeded soil. Appl. Environ. Microbiol. 57: 2873-2879.
8 Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 66: 2912-2917.
9 Omori, T., L. Monna, Y. Saiki, K. Kasuga, and T. Kodama. 1992. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl. Environ. Microbiol. 58: 911-915.
10 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Acinetobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
11 Katsuyama, C., S. Nakaoka, Y. Takeuchi, K. Tago, M. Hayatsu, and K. Kato. 2009. Complementary cooperation between syntrophic bacteria in pesticide degradation. J. Theor. Biol. 256: 644-654.   DOI   ScienceOn
12 Nelson, M. I. and A. Holder. 2009. A fundamental analysis of continuous flow bioreactor models governed by Contois kinetics. II. Reactor cascade. Chem. Eng. J. 149: 406-416.   DOI   ScienceOn
13 Madsen, E. L., J. L. Sinclair, and W. C. Ghiorse. 1991. In situ biodegradation: Microbiological patterns in a contaminated aquifer. Science 252: 830-833.   DOI
14 Lee, S. J., Y. W. Lee, J. Chung, J. K. Lee, J. Y. Lee, D. Jahng, Y. Cha, and Y. Yu. 2008. Reuse of low concentrated electronic wastewater using selected microbe immobilized cell system. Water Sci. Technol. 57: 1191-1197.   DOI   ScienceOn
15 Lewis, D. L., H. P. Kollig, and R. E. Hodson. 1986. Nutrient limitation and adaptation of microbial populations to chemicals transformations. Appl. Environ. Microbiol. 55: 2773-2778.
16 Linkfield, T. G., J. M. Suflita, and J. M. Tiedjei. 1989. Characterization of the acclimation period before anaerobic dehalogenation of halobenzoates. Appl. Environ. Microbiol. 55: 2773-2778.
17 Lorenz., M. G., B. W. Aardema, and W. Wackernagel. 1988. Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J. Gen. Microbiol. 134: 107-112.
18 Kirimura, K., T. Furuya, R. Sato, Y. Ishii, K. Kino, and S. Usami. 2002. Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R. Appl. Environ. Microbiol. 68: 3867-3872.   DOI   ScienceOn
19 Kurath, G. and R. Y. Morita. 1983. Starvation-survival physiological studies of a marine Pseudomonas sp. Appl. Environ. Microbiol. 45: 1206-1211.
20 Kang, H. S., B. K. Na, and D. H Park. 2007. Oxidation of butane to butanol coupled to electrochemical redox reaction of $NAD^{+}$/NADH. Biotech. Lett. 29: 1277-1280.   DOI   ScienceOn
21 Greene, E. A., L. M. Gieg, D. L. Coy, and P. M. Fedorak. 1998. Sulfolane biodegradation potential in aquifer sediments at sour natural gas plant sites. Wat. Res. 32: 3680-3688.   DOI   ScienceOn
22 Izumi, Y., T. Oshiro, H. Ogino, Y. Hine, and M. Shimao. 1994. Selective desulfurization by Rhodococcus erythropolis D-1. Appl. Environ. Microbiol. 60: 223-226.
23 Jokela, J., J. Pellinen, and M. Salkinoja-Salonen. 1987. Initial steps in the pathway for bacterial degradation of two tetrameric liginin model compounds. Appl. Environ. Microbiol. 53: 2642-2649.
24 Hayes, M. K. and G. T. Tayleor. 2006. Vertical distributions of thiosulfate and sulfite in the Cariaco basin. Limnol. Oceanogr. 51: 280-287   DOI   ScienceOn
25 Hwang, H-.M., R. E. Hodson, and D. L. Lewis. 1989. Microbial degradation kinetics of toxic organic chemicals over a wide range of concentrations in natural aquatic systems. Environ. Toxicol. Chem. 8: 65-74.   DOI
26 Hwang, T. S., B. K. Na, H. T. Tran, D. H. Ahn, and D. H. Park. 2008. A novel three-compartmented electrochemical bioreactor for enrichment of strict anaerobes based on metabolite production. Biotechnol. Bioprocess Eng. 13: 677-682.   DOI   ScienceOn
27 Fournier, J. C., P. Codaccioni, G. Soulas, and C. Repiquet. 1981. Soil adaptation to 2,4-D degradation in relation to the application rates and the metabolic behavior of the degrading microflora. Chemosphere 10: 977-984.   DOI   ScienceOn
28 Grady, C. P. L. 1985. Biodegradation: Its measurement and microbiological basis. Biotechnol. Bioeng. 27: 660-674.   DOI   ScienceOn
29 Behki, R. M. and S. U. Khan. 1986. Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. J. Agric. Food Chem. 34: 746-749.   DOI
30 Greene, E. A. and P. M. Federak. 1998. A differential medium for the isolation and enumeration of sulfolane-degrading bacteria. J. Microbiol. Methods 33: 255-262.   DOI   ScienceOn
31 Chaudhry, G. R. and G. H. Huang. 1988. Degradation of bromacil by a Pseudomonas sp. Appl. Environ. Microbiol. 54: 2203-2207.
32 Cook, A. M., H. Grossenbacher, and R. Hüter. 1983. Isolation and cultivation of microbes with biodegradative potential. Experientia 39: 1101-1198.   DOI   ScienceOn
33 Aamand, J., C. Jorgensen, E. Arvin, and B. K. Jensen. 1989. Microbial adaptation to degradation of hydrocarbons in polluted and unpolluted groundwater. J. Contam. Hydrol. 4: 299-312.   DOI   ScienceOn
34 Dec, J. and J. M. Bollg. 1988. Microbial release and degradation of catechol and chlorophenols bound to synthetic humic acid. Soil Sci. Soc. Am. J. 52: 1366-1371.   DOI   ScienceOn
35 Asaoka, S., T. Yamamoto, S. Kondo, and S. Hayakawa. 2009. Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresource Technol. 100: 4127-4132.   DOI   ScienceOn
36 Bachmann, A., W. de Bruin, J. C. Jumelet, H. H. N. Rijnaarts, and A. J. B. Zehnder. 1988. Aerobic biomineralization of alphahexachlorocyclohexane in contaminated soil. Appl. Environ. Microbiol. 54: 548-554.
37 Wiggins, B. A., S. H. Jones, and M. Alexander. 1987. Explanations for the acclimation period preceding the mineralization of organic chemicals in aquatic environments. Appl. Environ. Microbiol. 53: 791-796.
38 Wilson, J. T., J. F. McNabb, J. W. Cochran, T. H. Wang, M. B. Tomson, and P. B. Bedient. 1985. Influence of microbial adaptation on the fate of organic pollutants in ground water. Environ. Toxicol. Chem. 4: 721-726.
39 Barkay, T. and H. Pritchard. 1988. Adaptation of aquatic micriobial communities to pollutant stress. Microbiol. Sci. 5: 165-169.
40 Becker, J. G., G. Berardesco, B. E. Rittmann, and D. A. Stahl. 2006. Effects of endogenous substrates on adaptation of anaerobic microbial communities to 3-chlorobenzoate. Appl. Environ. Microbiol. 72: 449-456.   DOI   ScienceOn
41 Aelion, C. M., C. M. Swindoll, and F. K. Pfaender. 1987. Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. Appl. Environ. Microbiol. 53: 2212-2217.
42 Alexander, M. 1985. Biodegradation of organic chemicals. Environ. Sci. Technol. 19: 106-111.   DOI   ScienceOn
43 Swindoll, C. M., C. M. Aelion, and F. K. Pfaender. 1988. Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Appl. Environ. Microbiol. 54: 212-217.
44 Thomsson, E., C. Larsson, E. Albers, A. Nilsson, C. J. Franzen, and L. Gustafsson. 2003. Carbon starvation can induce energy deprivation and loss of fermentativity in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 3251-3257.   DOI   ScienceOn
45 Van der Meer, J. R., W. Roelofsen, G. Schraa, and A. J. B. Zehner. 1987. Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 in monstrile soil column. FEMS Microbiol. Ecol. 45: 333-341.
46 Aelion, C. M., D. C. Dobbins, and F. K. Pfaender. 1989. Adaptation of aquifer microbial communities to the biodegradation of xenobiotic compounds: Influence of substrate concentration and preexposure. Appl. Microbiol. Biotechnol. 8: 75-86.
47 Alexander, M. 1981. Biodegradation of chemicals of environmental concern. Science 211: 132-138.   DOI