Browse > Article
http://dx.doi.org/10.4014/jmb.1001.01006

Gellan Gum as Immobilization Matrix for Production of Cyclosporin A  

Survase, Shrikant A. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai)
Annapure, Uday S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai)
Singhal, Rekha S. (Food Engineering and Technology Department, Institute of Chemical Technology, University of Mumbai)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.7, 2010 , pp. 1086-1091 More about this Journal
Abstract
This study explored the use of gellan gum as an immobilization matrix for the production of cyclosporin A (CyA) by immobilized spores and mycelia of Tolypocladium inflatum MTCC 557. Different carriers, such as gellan gum, sodium alginate, celite beads, and silica, were tested as immobilization carriers, along with the role of the carrier concentration, biomass weight, number of spore-inoculated beads, and repeated utilization of the immobilized fungus. The maximum CyA production was 274 mg/l when using gellan gum [1% (w/v)], and a mycelial weight of 7.5% (w/v) supported the maximum production of CyA. Additionally, the addition of a combination of $_L$-valine (6 g/l) and $_L$-leucine (5 g/l) after 48 h of fermentation produced 1,338 mg/l of CyA when using gellan gum. The immobilized mycelia beads were found to remain stable for four repetitive cycles, indicating their potential for semicontinuous CyA production.
Keywords
Cyclosporin A; gellan gum; immobilization; fermentation; Tolypocladium inflatum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Sun, W. and M. W. Griffiths. 2000. Survival of Bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food. Microbiol. 61: 17-25.   DOI   ScienceOn
2 Lee, T. H., G. T. Chun, and Y. K. Chang. 1997. Development of sporulation/immobilization method and its application for the continuous production of cyclosporin A by Tolypocladium inflatum. Biotechnol. Prog. 13: 546-550.   DOI   ScienceOn
3 Potumarthi, R., Ch. Subhakar, A. Pavani, and A. Jetty. 2008. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods Bioresour. Technol. 99: 1776-1786.   DOI   ScienceOn
4 Sallam, L. A. R., A. H. El-Refai, A. A. Hamdi, A. H. El-Minofi, and S. I. Abd-Elsalam. 2005. Studies on the application of immobilization technique for the production of cyclosporin A by a local strain of Aspergillus terreus. J. Gen. Appl. Microbiol. 51: 143-149.   DOI   ScienceOn
5 Schlosser, D., S. Irrgang, and H. Schmander. 1993. Steroid hydroxylation with free and immobilized cells of Penicillium raistricki in the presence of B, cyclodextrin. Appl. Microbiol. Biotechnol. 39: 16-20.
6 Bihari, V., P. Gosivani, S. Rizvi, S. Base, and V. Voratt. 1984. Studies on immobilized fungal spores for microbial transformation of steroids. 11a$\alpha$-Hydroxylation of progesterone with immobilized spores of A. ochraceus G8 on polyacrylamide gel and other matrix. Biotechnol. Bioeng. 25: 1403-1408.
7 Chun, G. T. and S. N. Agathos. 1989. Immobilization of Tolypocladium inflatum spores into porous celite beads for cyclosporin A production. J. Biotechnol. 9: 237-254.   DOI   ScienceOn
8 Chun, G. T. and S. N. Agathos. 1991. Comparative studies of physiological and environmental effects on the production of cyclosporin A in suspended and immobilized cells of T. inflatum. Biotechnol. Bioeng. 37: 256-265.   DOI
9 Cinquin, C., G. Le Blay, I. Fliss, and C. Lacroix. 2004. Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb. Ecol. 48: 128-138.   DOI   ScienceOn
10 Dreyfuss, M., E. Harri, H. Hofmann, H. Kobel, W. Pache, and H. Tscherter. 1976. Cyclosporin A and C. New metabolites from Trichoderma polysporum. Eur. J. Appl. Microbiol. 3: 125-133.   DOI
11 Survase, S. A., U. S. Annapure, and R. S. Singhal. 2009. Statistical optimization of cyclosporin A production on a semisynthetic medium using Tolypocladium inflatum MTCC 557, Global J. Biotechnol. Biochem. 4: 184-192.
12 Schmuader, H., D. Shlosser, T. Gunther, A. Hattenbach, J. Sauerstien, F. Jungnickel, and M. Augesten. 1991. Application of immobilized cells on biotransformation of steroids. J. Basic Microbiol. 31: 453-477.   DOI   ScienceOn
13 Sekar, C. and K. Balaraman. 1998. Immobilization of the fungus Tolypocladium sp. for the production of cyclosporin A. Bioprocess Eng. 19: 281-283.
14 Survase, S. A., N. S. Shaligram, R. C. Pansuriya, U. S. Annapure, and R. S. Singhal. 2009. A novel medium for the enhanced production of cyclosporin A by Tolypocladium inflatum MTCC 557 using solid state fermentation. J. Microbiol. Biotechnol. 19: 462-467.   과학기술학회마을   DOI   ScienceOn
15 Wang, X., Z. Gai, B. Yu, J. Feng, C. Xu, Y. Yuan, Z. Lin, and P. Xu. 2007. Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl. Environ. Microbiol. 73: 6421-6428.   DOI   ScienceOn
16 Jal, P. K., S. Patel, and B. K. Mishra. 2004. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62: 1005-1028.   DOI   ScienceOn
17 Ferrance, J. P. 2007. Gellan beads as a transparent media for protein immobilization and affinity capture. J. Chromatogr. A 1165: 86-92.   DOI   ScienceOn
18 Gbewonyo, K. and D. Wang. 1983. Confining mycelial growth to porous micro beads: A novel technique to alter the morphology of non-Newtonian culture. Biotechnol. Bioeng. 25: 967-983.   DOI   ScienceOn
19 Gilleta, F., C. Roisin, M. A. Fliniaux, A. Jacquin-Dubreuil, J. N. Barbotin, and J. E. Nava-Saucedo. 2000. Immobilization of Nicotiana tabacum plant cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin. Enz. Microb. Technol. 26: 229-234.   DOI   ScienceOn
20 Abdel-fattah, Y. R., H. El Enshasy, M. Anwar, H. Omar, E. Abolmagd, and R. A. Zahra. 2007. Application of factorial experimental designs for optimization of cyclosporin A production by Tolypocladium inflatum in submerged culture J. Microbiol. Biotechnol. 17: 1930-1936.   과학기술학회마을
21 Baker, E. E., R. J. Prevoznak, S. W. Dew, and B. C. Buckland. 1984. Thienamycin production by Streptomyces catteleya cells immobilized in celite beads. Dev. Ind. Microbiol. 24: 467-474.
22 Agathos, S. N., J. W. Marshall, C. Maraiti, R. Parekh, and C. Moshosing. 1986. Physiological and genetic factors for process development of cyclosporin A fermentation. J. Ind. Microbiol. 1: 39-48.   DOI
23 Anisha, G. S. and P. Prema. 2008. Cell immobilization technique for the enhanced production of a-galactosidase by Streptomyces griseoloalbus. Bioresour. Technol. 99: 3325-3330.   DOI   ScienceOn
24 Bajaj, I. B., S. A. Survase, P. S. Saudagar, and R. S. Singhal. 2007. Gellan gum: Fermentative production, downstream processing and applications. Food Technol. Biotechnol. 45: 341-354.
25 Balakrishnan, K. and A. Pandey. 1996. Influence of amino acids on the biosynthesis of cyclosporin A by Tolypocladium inflatum. Appl. Microbiol. Biotechnol. 45: 800-803.   DOI   ScienceOn
26 Kubo, W., S. Miyazaki, and D. Attwood. 2003. Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations. Int. J. Pharm. 258: 55-64.   DOI   ScienceOn
27 Jones, A., D. N. Wood, T. Razniewska, G. M. Gaucher, and L. A. Behie. 1986. Continuous production of penicillin G by Penicillium chrysogenum cells immobilized on celite biocatalyst support particles. Can. J. Chem. Eng. 64: 547-552.   DOI
28 Kahan, B. D. (ed.). 1984. Cyclosporin: Biological Activity and Clinical Applications. Crune & Straton Inc., Orlando.
29 Kennedy, J. F. and J. M. S. Cabral. 1983. Immobilized living cells and their applications, pp. 189-280. In Chibata, I. and L. B. Wingard Jr. (eds.). Applied Biochemistry and Bioengineering. Academic Press, New York.
30 Lee, J. and S. Agathos. 1989. Effect of amino acids on the production of cyclosporin A by T. inflatum. Biotechnol. Lett. 11: 77-82.   DOI
31 Miyazaki, S., N. Kawasaki, W. Kubo, K. Endo, and D. Attwood. 2001. Comparison of in situ gelling formulations for the oral delivery of cimetidine. Int. J. Pharm. 220: 161-168.   DOI   ScienceOn
32 Nisha, A. K., S. Meinnanalakshmi, and K. Ramasamy. 2008. Comparative effect of amino acids in the production of cyclosporin by solid and submerged fermentations. Biotechnology 7: 205-208.   DOI