Browse > Article
http://dx.doi.org/10.4014/jmb.0907.07033

Production of Novel Cell-Associated Tannase from Newly Isolated Serratia ficaria DTC  

Belur, Prasanna D. (Department of Chemical Engineering, National Institute of Technology Karnataka)
Gopal, Mugeraya (Department of Chemical Engineering, National Institute of Technology Karnataka)
Nirmala, K.R. (Department of Chemical Engineering, National Institute of Technology Karnataka)
Basavaraj, N. (Department of Chemical Engineering, National Institute of Technology Karnataka)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.4, 2010 , pp. 732-736 More about this Journal
Abstract
Five strains of tannic acid degrading bacteria were isolated and identified by phenotypic characterization. All the five isolates showed cell-associated activity, whereas only three showed extracellular activity. Serratia ficaria DTC, showing the highest cell-associated activity (0.29 U/l), was selected for further shake-flask studies. Tannase synthesis was growth associated and reached the peak in the late stationary phase of growth. Organic nitrogen sources enhanced the tannase production. Peak tannase production of 0.56 U/l was recorded in the medium having the initial pH of 6. The pH and temperature optima of the enzyme were found to be 8.9 and $35^{\circ}C$, respectively. This is the first report of cell-associated activity in the case of bacterial tannase. Cell-associated tannase of Serratia ficaria DTC could be industrially important from the perspective of its activity at broad temperature and pH ranges, and its unusually high activity at pH 8.9.
Keywords
Cell-associated tannase; extracellular tannase; Serratia ficaria;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Harrison, S. T. L. 1991. Bacterial cell disruption: A key unit operation in the recovery of intracellular products. Biotech. Adv. 9: 217-240.   DOI   ScienceOn
2 Mata-Gomez, M., L. V. Rodriguez, E. L. Ramos, J. Renovato, M. A. Cruz-Hernandez, R. Rodriguez, J. Contreras, and C. N. Aguilar. 2009. A novel tannase from the xerophilic fungus Aspergillus niger GH1. J. Microbiol. Biotechnol. 19: 987-996.   과학기술학회마을   DOI
3 Pereira-Meirelles, F. V., M. H. M. Rocha-Leao, G. L. and Sant'Anna Jr. 2000. Lipase location in Yarrowia lipolytica cells. Biotechnol. Lett. 22: 71-75.   DOI   ScienceOn
4 Salamone, P. R. and R. J. Wodzinski. 1997. Production, purification and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens. Appl. Microbiol. Biotechnol. 48: 317-324.   DOI   ScienceOn
5 Yan, J.-Y. and Y.-J. Yan. 2008. Optimization for producing cell-bound lipase from Geotrichum sp. and synthesis of methyl oleate in mcroaqueous solvent. Appl. Microbiol. Biotechnol. 78: 431-439.   DOI   ScienceOn
6 Van de Lagemaat, J. and D. L. Pyle. 2001. Solid state fermentation and bioremediation: Development of continuous process for the production of fungal tannase. Chem. Eng. J. 84: 115-123.   DOI   ScienceOn
7 Seth, M. and S. Chand. 2000. Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori - Optimization of process parameters. Process Biochem. 36: 39-44.   DOI   ScienceOn
8 Admitsch, B. F. and W. A. Hampel. 2000. Formation of lipolytic enzymes by Brevibacterium linens. Biotechnol Lett. 22: 1643-1646.   DOI   ScienceOn
9 Ayed, L. and M. Hamdi. 2002. Culture conditions of tannase production by Lactobacillus plantarum. Biotechnol. Lett. 24: 1763-1765.   DOI   ScienceOn
10 Smith, A. H., E. Zoetendel, and R. I. Mackie. 2005. Bacterial mechanism to overcome inhibitory effects of dietary tannins. Microb. Ecol. 50: 197-205.   DOI   ScienceOn
11 Sinsuwan, S., S. Rodtong, and J. Yongsawatdigul. 2008. Characterization of $Ca^{2+}$-activated cell-bound proteinase from Virgibacillus sp. SK37 isolated from fish sauce fermentation. Lebenson. Wiss. Technol. 41: 2166-2174.   DOI   ScienceOn
12 Rajkumar, G. S. and S. C. Nandy. 1983. Isolation, purification and some properties of Penicillium chrysogenum tannase. Appl. Environ. Microb. 46: 525-527.
13 Lekha, P. K. and B. K. Lonsane. 1994. Comparative titers, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid state, liquid surface and submerged fermentation. Process Biochem. 29: 497-503.   DOI   ScienceOn
14 Mondal, K. C., R. Banarjee, and B. R. Pati. 2000. Tannase production by Bacillus licheniformis. Biotechnol. Lett. 22: 767-769.   DOI   ScienceOn
15 Mondal, K. C., D. Banerjee, R. Banerjee, and B. R. Pati. 2001. Production and characterization of tannase from Bacillus cereus KBR9. J. Gen. Appl. Microbiol. 47: 263-267.   DOI   ScienceOn
16 Bhat, T. K., B. Singh, and O. P. Sharma. 1998. Microbial degradation of tannins - A current perspective. Biodegradation 9: 343-357.   DOI   ScienceOn
17 Batra, A. and R. K. Saxena. 2005. Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem. 40: 1553-1557.   DOI   ScienceOn
18 Bergey's Manual of Determinative Bacteriology, 1994. 9th Ed. Lippincott Williams & Wilkins, Baltimore.
19 Belmares, R., J. C. Conttreras-Esquivel, R. Rodriguez-Herrera, A. R. Coronel, and C. N. Aguilar. 2004. Microbial production of tannase: An enzyme with potential use in food industry. Lebenson. Wiss. Technol. 37: 857-864.   DOI   ScienceOn
20 Deschamps, A. M., G. Otuk, and G. M. Lebeault. 1983. Production of tannase and degradation of chestnut tannin by bacteria. J. Ferment. Technol. 61: 55-59.
21 Gibson, A. W. and G. T. Macfarlane. 1988. Studies on the proteolytic activity of Bacteroides fragilis. J. Gen. Microbiol. 134: 19-27.
22 Haslam, E. and J. E. Stangroom. 1965. The esterase and depsidase activities of tannase. J. Biochem. 99: 28-31.
23 Kopecny, J. and R. J. Wallace. 1982. Cellular location and some properties of proteolytic enzymes of rumen bacteria, Appl. Microbiol. Biotechnol. 43: 1026-1033.
24 Kumar, R. and M. Singh. 1984. Tannins: Their adverse role in ruminant nutrition. J. Agric. Food Chem. 32: 447-453.   DOI