Browse > Article
http://dx.doi.org/10.4014/jmb.0905.05059

Molecular Cloning and Characterization of a cis-Epoxysuccinate Hydrolase from Bordetella sp. BK-52  

Pan, Hai Feng (College of Life Science, Zhejiang University)
Bao, Wen Na (Hangzhou Bioking Biochemical Engineering Co., Ltd.)
Xie, Zhi Peng (College of Life Science, Zhejiang University)
Zhang, Jian Guo (College of Life Science, Zhejiang University)
Li, Yongquan (College of Life Science, Zhejiang University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.4, 2010 , pp. 659-665 More about this Journal
Abstract
A cis-epoxysuccinate hydrolase (CESH) from Bordetella sp. BK-52 was purified 51.4-fold with a yield of 27.1% using ammonium sulfate precipitation, ionic exchange, hydrophobic interaction, molecular sieve chromatography and an additional anion-exchange chromatography. The CESH was stable in a broad range of temperature (up to $50^{\circ}C$) and pH (4.0-10.0) with optima of $40^{\circ}C$ and pH 6.5, respectively. It could be partially inhibited by EDTA-$Na_2$, $Ag^+$, SDS, and DTT, and slightly enhanced by $Ba^{2+}$ and $Ca^{2+}$. The enzyme exhibited high stereospecificity in D(-)-tartaric acid (enantiomeric excess value higher than 99%) with $K_m$ and $V_max$ values of 18.67 mM and $94.34\;{\mu}M$/min/mg for disodium cis-epoxysuccinate, respectively. The Bordetella sp. BK-52 CESH gene, which contained 885 nucleotides (open reading frame) encoding 294 amino acids with a molecular mass of about 32 kDa, was successfully overexpressed in Escherichia coli using a T7/lac promoter vector and the enzyme activity was increased 42-times compared with the original strain. It may be an industrial biocatalyst for the preparation of D(-)-tartaric acid.
Keywords
cis-Epoxysuccinate hydrolase; Bordetella; D(-)-tartaric acid; cloning; purification; characterization;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Jacobs, M. H. J., A. J. van den Wijngaard, M. Pentenga, and D. B. Janssen. 1991. Characterization of the epoxide hydrolase from an epichlorohydrin-degrading Pseudomonas sp. Eur. J. Biochem. 202: 1217-1222.   DOI   ScienceOn
2 Kroutil, W., Y. Genzel, M. Pietzsch, C. Syldatk, and K. Faber. 1998. Purification and characterization of a highly selective epoxide hydrolase from Nocardia sp. EH1. J. Biotechnol. 61: 143-150.   DOI   ScienceOn
3 Mischitz, M., K. Faber, and A. Willetts. 1995. Isolation of a highly enantioselective epoxide hydrolase from Rhodococcus sp. NCIMB 11216. Biotechnol. Lett. 17: 893-898.   DOI   ScienceOn
4 Nardini, M., R. Rink, D. B. Janssen, and B. W. Dijkstra. 2001. Structure and mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J. Mol. Catal. B Enzym. 11: 1035-1042.   DOI   ScienceOn
5 Pan, H. F., Z. P. Xie, W. N. Bao, and J. G. Zhang. 2008. Optimization of culture conditions to enhance cis-epoxysuccinate hydrolase production in Escherichia coli by response surface methodology. Biochem. Eng. J. 42: 133-138.   DOI   ScienceOn
6 Liu, Y. Q. and X. K. Yan. 1983. The colorimetry mensuration for tartaric acid. Gong Ye Wei Sheng Wu 13: 32-37.
7 Liu, Z., Y. Li, Y. Xu, L. Ping, and Y. Zheng. 2007. Cloning, sequencing, and expression of a novel epoxide hydrolase gene from Rhodococcus opacus in Escherichia coli and characterization of enzyme. Appl. Microbiol. Biotechnol. 74: 99-106.   DOI   ScienceOn
8 Misawa, E., C. K. Chion, I. V. Archer, M. P. Woodland, N. Y. Zhou, S. F. Carter, D. A. Widdowson, and D. J. Leak. 1998. Characterisation of a catabolic epoxide hydrolase from a Corynebacterium sp. Eur. J. Biochem. 253: 173-183.   DOI   ScienceOn
9 Nakamura, T., T. Nagasawa, F. Yu, I. Watanabe, and H. Yamada. 1994. Purification and characterization of two epoxide hydrolases from Corynebacterium sp. strain N-1074. Appl. Environ. Microbiol. 60: 4630-4633.
10 Pan, H. F., Z. P. Xie, W. N. Bao, and J. G. Zhang. 2008. Isolation and identification of a novel cis-epoxysuccinate hydrolase-producing Bordetella sp. BK-52 and optimization of enzyme production. Wei Sheng Wu Xue Bao 48: 1075-1081.
11 Rink, R., M. Fennema, M. Smids, U. Dehmel, and D. B. Janssen. 1997. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J. Biol. Chem. 272: 14650-14657.   DOI   ScienceOn
12 Steinreiber, A. and K. Faber. 2001. Microbial epoxide hydrolases for preparative biotransformations. Curr. Opin. Biotechnol. 12: 552-558.   DOI   ScienceOn
13 Willaert, R. and L. De Vuyst. 2006. Continuous production of L(+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor. Appl. Microbiol. Biotechnol. 71: 155-163.   DOI   ScienceOn
14 Ghosh, A. K., E. S. Koltun, and G. Bilcer. 2001. Tartaric acid and tartarates in the synthesis of bioactive molecules. Synthesis 9: 1281-1301.
15 Archelas, A. and R. Furstoss. 1998. Epoxide hydrolases: New tools for the synthesis of fine organic chemicals. Trends Biotechnol. 16: 108-116.   DOI   ScienceOn
16 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
17 Chung, C. T., S. L. Niemela, and R. H. Miller. 1989. One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. U.S.A. 86: 2172-2175.   DOI   ScienceOn
18 Huang, T. H. and X. M. Qian. 1990. Production of L (+) tartaric acid. Gong Ye Wei Sheng Wu 6: 14-17.
19 Kotik, M. and P. Kyslik. 2006. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M 200. Biochim. Biophys. Acta 1760: 245-252.   DOI   ScienceOn
20 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227: 680-685.   DOI   ScienceOn