Browse > Article
http://dx.doi.org/10.4014/jmb.0907.07035

Saccharomyces cerevisiae Hsp30 is Necessary for Homeostasis of a Set of Thermal Stress Response Functions  

Thakur, Suresh (Division of R&D Triesta Sciences HCG Tower)
Chakrabarti, Amitabha (Division of Molecular Biology, Defence Institute of Physiology and Allied Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.2, 2010 , pp. 403-409 More about this Journal
Abstract
Saccharomyces cerevisiae Hsp30 is a plasma membrane heat shock protein that is induced by various environmental stress conditions. However, the functional role of Hsp30 during diverse environmental stressors is not presently known. To gain insight into its function during thermal stress, we have constructed and characterized a ${\Delta}hsp30$ strain during heat stress. $BY4741{\Delta}hsp30$ cells were found to be more sensitive compared with BY4741 cells, when exposed to a lethal heat stress at $50^{\circ}C$. When budding yeast is exposed to either heat shock or weak organic acid, it inhibits Pma1p activity. In this study, we measured the levels of Pma1p in mutant and Wt cells both during optimal temperature and heat shock temperature. We observed that $BY4741{\Delta}hsp30$ cells showed constitutive reduction of Pma1p. To gain further insights into the role of Hsp30 during heat stress, we compared the total protein profile by 2D gel electrophoresis followed by identification of differentially expressed spots by LC-MS. We observed that contrary to that expected from thermal-stress-induced changes in gene expression, the ${\Delta}hsp30$ mutant maintained elevated levels of Pdc1p, Trx1p, and Nbp35p and reduced levels of Atp2p and Sod1p during heat shock. In conclusion, Hsp30 is necessary during lethal heat stress, for the maintenance of Pma1p and a set of thermal stress response functions.
Keywords
Hsp30; heat stress; Pma1; stress response; thermotolerance;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Schmitt, M., P. Schwanewilm, J. Ludwig, and F. Lichtenberg. 2006. Use of PMA1 as a housekeeping biomarker for assessment of toxicant-induced stress in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72: 1515-1522.   DOI   ScienceOn
2 Adams, A., D. E. Gottschling, C. A. Kaiser, and T. Stearns. 1997. Methods in Yeast Genetics. Cold Spring Harbour Laboratory Press.
3 Braley, R. and P. W. Piper. 1997. The C-terminus of yeast plasma membrane $H^+-ATPase is essential for the regulation of this enzyme by heat shock protein Hsp30, but not for stress activation. FEBS Lett. 418: 123-126.   DOI
4 Galeote, V. A., H. Alexandre, B. Bach, P. Delobel, S. Dequin, and B. Blondin. 2007. Sfl1p as an activator of HSP30 gene in Saccharomyces cerevisiae. Curr. Genet 52: 55-63.   DOI   ScienceOn
5 Jenkins, G. M., A. Richards, T. Wahl, C. Mao, L. Obeid, and Y. Hannun. 1997. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J. Biol. Chem. 272: 32566-32572.   DOI
6 Kellermann, E., P. G. Seeboth, and C. P. Hollenberg. 1986. Analysis of the primary structure and promoter function of a pyruvate decarboxylase gene (PDC1) from Saccharomyces cerevisiae. Nucleic Acid Res. 14: 8963-8977.   DOI   ScienceOn
7 Lorenz, M. C., R. S. Muir, E. Lim, J. McElver, S. C. Weber, and J. Heitman. 1995. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158: 113-117.   DOI   ScienceOn
8 Panaretou, B. and P. Piper. 1992. The plasma membrane of yeast acquires a novel heat-shock protein (Hsp30) and displays a decline in proton pumping ATPase levels in response to both heat shock and entry to stationary phase. Eur. J. Biochem. 206: 635-640.   DOI   ScienceOn
9 Parsell, D. A. and S. Lindquist. 1993. The function of heatshock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437-496.   DOI   ScienceOn
10 Sorin, A., G. Rosas, and R. Rao. 1997. PMR1, a $Ca^{2+}$-ATPase in yeast golgi, has properties distinct from sarco/endoplasmic Reticulum and plasma membrane calcium pumps. J. Biol. Chem. 272: 9895-9901.   DOI
11 Takeda, M., A. Vassarotti, and M. G. Douglas. 1985. Nuclear genes coding the yeast mitochondrial adenosine triphosphatase complex: Primary sequence analysis of ATP2 encoding the F1- ATPase beta-subunit precursor. J. Biol. Chem. 260: 15458-15465.
12 Levin, D. E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69: 262-291.   DOI   ScienceOn
13 Reinders, J., K. Wanger, R. P. Zahedi, D. Stojanovski, B. Eyrich, M. Van der Laan, et al. 2007. Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol. Cell Proteomics 6: 1896-1906.   DOI   ScienceOn
14 Sheehan, K. B., K. McInneenry, B. P. Gage, S. D. Altenburg, and L. E.Hyman. 2007. Yeast genomic expression patterns in response to low-shear modeled microgravity. BMC Genomics 8: 3.   DOI
15 Winkler, A., C. Arkind, C. P. Mattison, A. Burkholder, K. Knoche, and I. Ota. 2002. Heat stress activates the yeast highosmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot. Cell 1: 163-173.   DOI   ScienceOn
16 Saltzgaber-Muller, J., S. P. Kunapulli, and M. G. Douglas. 1983. Nuclear gene coding the yeast mitochondrial adenosine triphosphatase complex, isolation of ATP2 coding the F1-ATPase beta subunit. J. Biol. Chem. 258: 11465-11470.
17 Gonzalez-Porque, P., A. Bladesten, and P. Reichard. 1970. The involvement of the thioredoxin system in the reduction of methionine sulfoxide and sulfate. J. Biol. Chem. 245: 2371-2374.
18 Gong, X. and A. Chang. 2001. A mutant plasma membrane ATPase Pma1-10 is defective in stability at the yeast cell surface. Proc. Natl. Acad. Sci. U.S.A. 98: 9104-9109.   DOI   ScienceOn
19 Perzov, N., H. Nelson, and N. Nelson. 2000. Altered distribution of yeast plasma membrane ATPase as a feature of vacuolar H+- ATPase null mutants. J. Biol. Chem. 275: 40088-40095.   DOI
20 Hendrick, J. P. and F. U. Hartl. 1993. Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62: 349-384.   DOI   ScienceOn
21 Gonzalez-Porque, P., A. Bladesten, and P. Reichard. 1970. Purification of a thioredoxin system from yeast. J. Biol. Chem. 245: 2363-2370.
22 Seeboth, P. G., K. Bohnsack, and C. P. Hollenberg. 1990. pdc1(0) mutants of Saccharomyces cerevisiae give evidence for an additional structural PDC gene: Cloning of PDC5, a gene homologous to PDC1. J. Bacteriol. 172: 678-685.
23 Shalev, A., L. Valasek, C. A. Pise-Masison, M. Radonovich, L. Phan, J. Clayton, et al. 2001. Saccharomyces cerevisiae protein Pci8p and human protein eIF3/Int-6 interact with eIF3 core complex by binding to eIF3 core complex subunits. J. Biol. Chem. 276: 34948-34957.   DOI
24 Baudin, A., O. Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acid Res. 21: 3329-3330.   DOI   ScienceOn
25 Lee, S. G., M. F. Schwartz, J. K. Duong, and D. F. Stern. 2003. Rad53 phosphorylation site clusters are important for rad53 regulation and signaling. Mol. Cell Biol. 23: 6300-6314.   DOI   ScienceOn
26 Piper, P. W., C. Ortiz-Calderon, C. Holyoak, P. Coote, and M. Cole. 1997. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane $H^+-ATPase. Cell Stress Chaperones 2: 12-24.   DOI   ScienceOn
27 Gasch, A. P., P. T. Spellman, C. M. Kao, O. C. Harel, M. B. Eisen, G. Storz, D. Botstein, and P. O. Brown. 2000. Genomic expression programs in the response of yeast cells to environmental change. Mol. Biol. Cell 11: 4241-4257.
28 Seymour, I. J. and P. W. Piper. 1999. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145: 231-239.   DOI   ScienceOn