Browse > Article
http://dx.doi.org/10.4014/jmb.0906.06005

Heterologous Production of Streptokinase in Secretory Form in Streptomyces lividans and in Nonsecretory Form in Escherichia coli  

Kim,, Mi-Ran (Department of Biological Science, Myongji University)
Choeng, Yong-Hoon (Department of Biological Science, Myongji University)
Chi, Won-Jae (Department of Biological Science, Myongji University)
Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University)
Hong, Soon-Kwang (Department of Biological Science, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.1, 2010 , pp. 132-137 More about this Journal
Abstract
The skc gene encoding streptokinase (SK) with a molecular mass of approximately 47.4 kDa was cloned from Streptococcus equisimilis ATCC 9542 and heterologously overexpressed in Streptomyces lividans TK24 and E. coli using various strong promoters. When the promoter for sprT [Streptomyces griseus trypsin (SGT)] was used in the host S. lividans TK24, a 47.4-kDa protein was detected along with a smaller hydrolyzed protein (44 kDa), suggesting that posttranslational hydrolysis had occurred as has been reported in other expression systems. The casein/plasminogen plate assay revealed that the plasmid construct containing the SGT signal peptide was superior to that containing the SK signal peptide in terms of SK production. Maximal production of SK was calculated to be about 0.25 unit/ml of culture broth, a value that was five times higher than that obtained with other expression systems using ermE and tipA promoters in the same host. When the skc gene was expressed in E. coli BL21(${\Delta}DE3$)pLys under the control of the T7 promoter, a relatively large amount of SK was expressed in soluble form without hydrolysis. SK activity in E. coli/pET28a-$T7_pSK_m$ was more than 2 units/ml of culture broth, even though about half of the expressed protein formed an inactive inclusion body.
Keywords
Streptokinase; Streptococcus equisimilis; skc; Streptomyces; E. coli;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Kieser, H., M. J. Bibb, M. J. Buttner, F. K. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, U.K.
2 Malke, H. and J. J. Ferretti. 1987. Streptokinase: Cloning, expression and excretion by Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 81: 3357-3561.
3 Sriraman, K. and G. Jayaraman. 2006. Enhancement of recombinant streptokinase production in Lactococcus lactis by suppression of acid tolerance response. Appl. Microbiol. Biotechnol. 72: 1202-1209.   DOI   ScienceOn
4 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
5 Laplace, F., J. Muller, J. Gumpert, and H. Malke. 1989. Novel shuttle vectors for improved streptokinase expression in streptococci and bacterial L-forms. FEMS Microbiol. Lett. 65: 89-94.   DOI
6 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
7 Pimienta, H., J. C. Ayala, C. Rodriguez, A. Ramos, L. Van Mellaert, C. Vallin, and J. Anne. 2007. Recombinant production of Streptococcus equisimilis streptokinase by Streptomyces lividans. Microb. Cell Fact. 6: 20.   DOI
8 Jackson, K. W., H. Malke, D. Gerlach, J. J. Ferretti, and J. Tang. 1986. Active streptokinase from the cloned gene in Streptococcus sanguis is without the carboxy terminal 32 residues. Biochemistry 25: 108-114.   DOI   ScienceOn
9 Castellino, F. J., J. M. Sodetz, W. J. Brockway, and G. E. Siefring Jr. 1976. Streptokinase. Methods Enzymol. 45: 244-257.   DOI
10 Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580.   DOI
11 Jackson, K. W. and J. Tang. 1982. Complete amino acid sequence of streptokinase and its homology with serine proteases. Biochemistry 21: 6620-6625.   DOI   ScienceOn
12 Klessen, C. and H. Malke. 1986. Expression of streptokinase gene from Streptococcus equisimilis in Bacillus subtilis. J. Basic Microbiol. 26: 75-81.   DOI   ScienceOn
13 Chi, W. J., M. S. Kim, J. H. Kim, D. K. Kang, and S. K. Hong. 2005. Molecular cloning and analysis of the genes in the vicinity of Streptomyces griseus trypsin (SGT) gene from Streptomyces griseus ATCC10137. Korean J. Microbiol. 41: 255-261.
14 Doumith, M., P. Weingarten, U. F. Wehmeier, K. Salah-Bey, B. Benhamou, C. Capdevila, J. M. Michel, W. Piepersberg, and M. C. Raynal. 2000. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol. Gen. Genet. 264: 477-485.   DOI   ScienceOn
15 Schick, L. A. and F. J. Castellino. 1974. Direct evidence for the generation of an active site in the plasminogen moiety of the streptokinase-human plasminogen activator complex. Biochem. Biophys. Res. Commun. 57: 47-54.   DOI   ScienceOn
16 Ko, J. H., D. K. Park, C. Kim, S. H. Lee, and S. M. Byun. 1995. High-level expression and secretion of streptokinase in Escherichia coli. Biotechnol. Lett. 17: 1019-1024.   DOI   ScienceOn
17 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
18 Oh, E. A., M.-S. Kim, W.-J. Chi, J.-H. Kim, and S.-K. Hong. 2007. Characterization of the sgtR1 and sgtR2 genes and their role in regulating expression of the sprT gene encoding Streptomyces griseus trypsin. FEMS Microbiol. Lett. 276: 75-82.   DOI   ScienceOn
19 Okanishi, M., K. Suzuki, and H. Umezawa. 1974. Formation and reversion of streptomycete protoplasts: Cultural conditions and morphological study. J. Gen. Microbiol. 80: 389-400.   DOI   ScienceOn
20 Yang, H. Y., S. S. Choi, W. J. Chi, J. H. Kim, D. K. Kang, J. Chun, S. S. Kang, and S. K. Hong. 2005. Identification of the sprU gene encoding an additional sprT homologous trypsin-type protease in Streptomyces griseus. J. Microbiol. Biotechnol. 15: 1125-1129.
21 Boyle, M. D. and R. Lottenberg. 1997. Plasminogen activation by invasive human pathogens. Thromb. Haemost. 77: 1-10.
22 Christen, E. H., M. Karlsson, M. M. Kampf, C. C. Weber, M. Fussenegger, and W. Weber. 2009. A general strategy for the production of difficult-to-express inducer-dependent bacterial repressor proteins in Escherichia coli. Protein Expr. Purif. 66: 158-164.   DOI   ScienceOn
23 Kato, J. Y., W. J. Chi, Y. Ohnishi, S. K. Hong, and S. Horinouchi. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187: 286-295.   DOI   ScienceOn
24 Cherish Babu, P. V., V. K. Srinivas, V. Krishna Mohan, and E. Krishna. 2008. Renaturation, purification and characterization of streptokinase expressed as inclusion body in recombinant E. coli. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 861: 218-226.   DOI   ScienceOn
25 Takano, E., J. White, C. J. Thompson, and M. J. Bibb. 1995. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166: 133-137.   DOI   ScienceOn